Do you want to publish a course? Click here

Probing seed black holes using future gravitational-wave detectors

145   0   0.0 ( 0 )
 Added by Jonathan R. Gair
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band that lies between the sensitivity bands of existing ground-based detectors and the planned space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA). However, there are proposals for more advanced detectors that will bridge this gap, including the third generation ground-based Einstein Telescope and the space-based detector DECIGO. In this paper we demonstrate that such future detectors should be able to detect gravitational waves produced by the coalescence of the first generation of light seed black-hole binaries and provide information on the evolution of structure in that era. These observations will be complementary to those that LISA will make of subsequent mergers between more massive black holes. We compute the sensitivity of various future detectors to seed black-hole mergers, and use this to explore the number and properties of the events that each detector might see in three years of observation. For this calculation, we make use of galaxy merger trees and two different seed black hole mass distributions in order to construct the astrophysical population of events. We also consider the accuracy with which networks of future ground-based detectors will be able to measure the parameters of seed black hole mergers, in particular the luminosity distance to the source. We show that distance precisions of ~30% are achievable, which should be sufficient for us to say with confidence that the sources are at high redshift.



rate research

Read More

Binary black holes emit gravitational radiation with net linear momentum leading to a retreat of the final remnant black hole that can reach up to $sim5,000$ km/s. Full numerical relativity simulations are the only tool to accurately compute these recoils since they are largely produced when the black hole horizons are about to merge and they are strongly dependent on their spin orientations at that moment. We present eight new numerical simulations of BBH in the hangup-kick configuration family, leading to the maximum recoil. Black holes are equal mass and near maximally spinning ($|vec{S}_{1,2}|/m_{1,2}^2=0.97$). Depending on their phase at merger, this family leads to $simpm4,700$ km/s and all intermediate values of the recoil along the orbital angular momentum of the binary system. We introduce a new invariant method to evaluate the recoil dependence on the merger phase via the waveform peak amplitude used as a reference phase angle and compare it with previous definitions. We also compute the mismatch between these hangup-kick waveforms to infer their observable differentiability by gravitational wave detectors, such as advanced LIGO, finding currently reachable signal-to-noise ratios, hence allowing for the identification of highly recoiling black holes having otherwise essentially the same binary parameters.
The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have modestly large spins ($agtrsim 0.4$) and modest mass ratios ($qgtrsim 2$). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.
Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.
Gravitational waves detected by advanced ground-based detectors have allowed studying the universe in a way which is fully complementary to electromagnetic observations. As more sources are detected, it will be possible to measure properties of the local population of black holes and neutron stars, including their mass and spin distributions. Once at design sensitivity, existing instruments will be able to detect heavy binary black holes at redshifts of $sim 1$. Significant upgrades in the current facilities could increase the sensitivity by another factor of few, further extending reach and signal-to-noise ratio. More is required to access the most remote corners of the universe. Third-generation gravitational-wave detectors have been proposed, which could observe most of the binary black holes merging anywhere in the universe. In this paper we check if and to which extent it makes sense to keep previous-generation detectors up and running once a significantly more sensitive detector is online. First, we focus on a population of binary black holes with redshifts distributed uniformly in comoving volume. We show that measurement of extrinsic parameters, such as sky position, inclination and luminosity distance can significantly benefit from the presence of a less sensitive detector. Conversely, intrinsic parameters such as emph{detector-frame} masses and spins are largely unaffected. Measurement of the emph{source-frame masses} is instead improved, owing to the improvement of the distance measurement. Then, we focus on nearby events. We simulated sources similar to GW150914 and GW151226 and check how well their parameters can be measured by various networks. Here too we find that the main difference is a better estimation of the sky position, although even a single triangular-shaped third-generation detector can estimate their sky position to 1~deg$^2$ or better.
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article: Quantum measurement theory in gravitational-wave detectors [Living Rev. Relativity 15, 5 (2012)], we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا