Do you want to publish a course? Click here

The Spitzer c2d Survey of Nearby Dense Cores: VI. The Protostars of Lynds Dark Nebula 1221

186   0   0.0 ( 0 )
 Added by C. H. Young
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars towards L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modelling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.



rate research

Read More

Infrared images of the dark cloud core B59 were obtained with the Spitzer Space Telescope as part of the Cores to Disks Legacy Science project. Photometry from 3.6-70 microns indicates at least 20 candidate low-mass young stars near the core, more than doubling the previously known population. Out of this group, 13 are located within about 0.1 pc in projection of the molecular gas peak, where a new embedded source is detected. Spectral energy distributions span the range from small excesses above photospheric levels to rising in the mid-infrared. One other embedded object, probably associated with the millimeter source B59-MMS1, with a bolometric luminosity L(bol) roughly 2 L(sun), has extended structure at 3.6 and 4.5 microns, possibly tracing the edges of an outflow cavity. The measured extinction through the central part of the core is A(V) greater than of order 45 mag. The B59 core is producing young stars with a high efficiency.
We present observations of 10.6 square degrees of the Perseus molecular cloud at 24, 70, and 160 microns with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS). The image mosaics show prominent, complex extended emission dominated by illuminating B stars on the East side of the cloud, and by cold filaments of 160 micron emission on the West side. Of 3950 point sources identified at 24 microns, 1141 have 2MASS counterparts. A quarter of these populate regions of the Ks vs. Ks-[24] diagram that are distinct from stellar photospheres and background galaxies, and thus are likely to be cloud members with infrared excess. Nearly half (46%) of these 24 micron excess sources are distributed outside the IC 348 and NGC 1333 clusters. NGC 1333 shows the highest fraction of stars with flat or rising spectral energy distributions (28%), while Class II SEDs are most common in IC 348. These results are consistent with previous relative age determinations for the two clusters. The intercluster region contains several tightly clumped (r~0.1 pc) young stellar aggregates whose members exhibit a wide variety of infrared spectral energy distributions characteristic of different circumstellar environments. One possible explanation is a significant age spread among the aggregate members, such that some have had time to evolve more than others. Alternatively, if the aggregate members all formed at roughly the same time, then remarkably rapid circumstellar evolution would be required to account for the association of Class I and Class III sources at ages <~1 Myr. We highlight important results for several other objects as well (full abstract in the paper).
We report the first detections of the Class 0 protostellar source IRAM 04191+1522 at wavelengths shortward of 60 microns with the Spitzer Space Telescope. We see extended emission in the Spitzer images that suggests the presence of an outflow cavity in the circumstellar envelope. We combine the Spitzer observations with existing data to form a complete dataset ranging from 3.6 to 1300 microns and use these data to construct radiative transfer models of the source. We conclude that the internal luminosity of IRAM 04191+1522, defined to be the sum of the luminosity from the internal sources (a star and a disk), is L_int = 0.08 +/- 0.04 L_sun, placing it among the lowest luminosity protostars known. Though it was discovered before the launch of the Spitzer Space Telescope, IRAM 04191+1522 falls within a new class of Very Low Luminosity Objects being discovered by Spitzer. Unlike the two other well-studied objects in this class, which are associated either with weak, compact outflows or no outflows at all, IRAM 04191+1522 has a well-defined molecular outflow with properties consistent with those expected based on relations derived from higher luminosity (L_int > 1 L_sun) protostars. We discuss the difficulties in understanding IRAM 04191+1522 in the context of the standard model of star formation, and suggest a possible explanation for the very low luminosity of this source.
88 - Tyler L. Bourke 2006
We present Spitzer Space Telescope observations of the evolved starless core L1521F which reveal the presence of a very low luminosity object (L < 0.07 Lsun). The object, L1521F-IRS, is directly detected at mid-infrared wavelengths (>5 micron) but only in scattered light at shorter infrared wavelengths, showing a bipolar nebula oriented east-west which is probably tracing an outflow cavity. The nebula strongly suggests that L1521F-IRS is embedded in the L1521F core. Thus L1521F-IRS is similar to the recently discovered L1014-IRS and the previously known IRAM 04191 in its substellar luminosity and dense core environment. However these objects differ significantly in their core density, core chemistry, and outflow properties, and some may be destined to be brown dwarfs rather than stars.
Motivated by the long-standing luminosity problem in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate Lbol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 Lsun - 69 Lsun, and has a mean and median of 4.3 Lsun and 1.3 Lsun, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (Lbol < 0.5 Lsun) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 um < wavelength < 850 um) and have Lbol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35% - 40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased dataset should aid such future work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا