Do you want to publish a course? Click here

The discovery of a typical radio galaxy at z = 4.88

253   0   0.0 ( 0 )
 Added by Matt Jarvis
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter we report the discovery of a z=4.88 radio galaxy discovered with a new technique which does not rely on pre-selection of a sample based on radio properties such as steep-spectral index or small angular size. This radio galaxy was discovered in the Elais-N2 field and has a spectral index of alpha = 0.75, i.e. not ultra-steep spectrum. It also has a luminosity consistent with being drawn from the break of the radio luminosity function and can therefore be considered as a typical radio galaxy. Using the Spitzer-SWIRE data over this field we find that the host galaxy is consistent with being similarly massive to the lower redshift powerful radio galaxies (~1-3L*). We note however, that at z=4.88 the H-alpha line is redshifted into the IRAC 3.6micron filter and some of the flux in this band may be due to this rather than stellar continuum emission. The discovery of such a distant radio source from our initial spectroscopic observations demonstrate the promise of our survey for finding the most distant radio sources.



rate research

Read More

Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increased dramatically over the last few years, but previously only three radio-loud (R2500>10) sources had been reported at z>6, with the most distant being a quasar at z=6.18. Here we present the discovery and characterization of P172+18, a radio-loud quasar at z=6.823. This source has an MgII-based black hole mass of ~3x10^8 Msun and is one of the fastest accreting quasars, consistent with super-Eddington accretion. The ionized region around the quasar is among the largest measured at these redshifts, implying an active phase longer than the average lifetime of the z>6 quasar population. From archival data, there is evidence that its 1.4 GHz emission has decreased by a factor of two over the last two decades. The quasars radio spectrum between 1.4 and 3.0 GHz is steep (alpha=-1.31) and has a radio-loudness parameter R2500~90. A second steep radio source (alpha=-0.83) of comparable brightness to the quasar is only 23.1 away (~120 kpc at z=6.82; projection probability <2%), but shows no optical or near-infrared counterpart. Further follow-up is required to establish whether these two sources are physically associated.
104 - Ruta Kale , Daniel R. Wik (2 , 3 2017
Radio relics at the peripheries of galaxy clusters are tracers of the elusive cluster merger shocks. We report the discovery of a single radio relic in the galaxy cluster PLCK G200.9-28.2 ($z=0.22$, $M_{500} = 2.7pm0.2 times 10^{14} M_{odot}$) using the Giant Metrewave Radio Telescope at 235 and 610 MHz and the Karl G. Jansky Very Large Array at 1500 MHz. The relic has a size of $sim 1 times 0.28$ Mpc, an arc-like morphology and is located at 0.9 Mpc from the X-ray brightness peak in the cluster. The integrated spectral index of the relic is $1.21pm0.15$. The spectral index map between 235 and 610 MHz shows steepening from the outer to the inner edge of the relic in line with the expectation from a cluster merger shock. Under the assumption of diffusive shock acceleration, the radio spectral index implies a Mach number of $3.3pm1.8$ for the shock. The analysis of archival XMM Newton data shows that PLCK G200.9-28.2 consists of a northern brighter sub-cluster, and a southern sub-cluster in a state of merger. This cluster has the lowest mass among the clusters hosting single radio relics. The position of the Planck Sunyaev Zeldovich effect in this cluster is offset by 700 kpc from the X-ray peak in the direction of the radio relic, suggests a physical origin for the offset. Such large offsets in low mass clusters can be a useful tool to select disturbed clusters and to study the state of merger.
181 - Ananda Hota 2011
We report the discovery of a unique radio galaxy at z=0.137, which could possibly be the second spiral-host large radio galaxy and also the second triple-double episodic radio galaxy. The host galaxy shows signs of recent star formation in the UV but is optically red and is the brightest galaxy of a possible cluster. The outer relic radio lobes of this galaxy, separated by ~1 Mpc, show evidence of spectral flattening and a high fraction of linear polarisation. We interpret that these relic lobes have experienced re-acceleration of particles and compression of the magnetic field due to shocks in the cluster outskirts. From the morphology of the relics and galaxy distribution, we argue that re-acceleration is unlikely to be due to a cluster-cluster merger and suggest the possibility of accretion shocks. The source was identified from SDSS, GALEX, NVSS and FIRST survey data but we also present follow up optical observations with the Lulin telescope and 325 MHz low frequency radio observations with the GMRT. We briefly discuss the scientific potential of this example in understanding the evolution of galaxies and clusters by accretion, mergers, star formation, and AGN feedback.
196 - Y. Matsuda 2009
We present the discovery of a candidate of giant radio-quiet Lyman-alpha (Lya) blob (RQLAB) in a large-scale structure around a high-redshift radio galaxy (HzRG) lying in a giant Lya halo, B3 J2330+3927 at redshift z=3.087. We obtained Lya imaging around B3 J2330+3927 with Subaru/Suprime-Cam to search for Lya emitters (LAEs) and absorbers (LAAs) at redshift z=3.09+-0.03. We detected candidate 127 LAEs and 26 LAAs in the field of view of 31 x 24. We found that B3 J2330+3927 is surrounded by a 130 kpc Lya halo and a large-scale (60 x 20 comoving Mpc) filamentary structure. The large-scale structure contains one prominent local density peak with an overdensity of greater than 5, which is 8 (15 comoving Mpc) away from B3 J2330+3927. In this peak, we discovered a candidate 100 kpc RQLAB. The existence of both types of Lya nebulae in the same large-scale structure suggests that giant Lya nebulae need special large-scale environments to form. On smaller scales, however, the location of B3 J2330+3927 is not a significant local density peak in this structure, in contrast to the RQLAB. There are two possible interpretations of the difference of the local environments of these two Lya nebulae. Firstly, RQLAB may need a prominent (delta ~ 5) density peak of galaxies to form through intense star-bursts due to frequent galaxy interactions/mergers and/or continuous gas accretion in an overdense environment. On the other hand, Lya halo around HzRG may not always need a prominent density peak to form if the surrounding Lya halo is mainly powered by its radio and AGN activities. Alternatively, both RQLAB and Lya halo around HzRG may need prominent density peaks to form but we could not completely trace the density of galaxies because we missed evolved and dusty galaxies in this survey.
We present the discovery of a massive, quiescent galaxy at z=2.99. We have obtained a HST/WFC3 spectrum of this object and measured its redshift from the detection of a deep 4000A break consistent with an old population and a high metallicity. By stellar population modeling of both its grism spectrum and broad-band photometry, we derive an age of ~0.7 Gyr, implying a formation redshift of z>4, and a mass >10^11 Msun. Although this passive galaxy is the most distant confirmed so far, we find that it is slightly less compact than other z>2 early-types of similar mass, being overall more analogous to those z~1.6 field early-type galaxies. The discovery of this object shows that early-type galaxies are detectable to at least z=3 and suggests that the diversity of structural properties found in z=1.4-2 ellipticals to earlier epochs could have its origin in a variety of formation histories among their progenitors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا