Do you want to publish a course? Click here

Inflating and Deflating Hot Jupiters: Coupled Tidal and Thermal Evolution of Known Transiting Planets

130   0   0.0 ( 0 )
 Added by Neil Miller
 Publication date 2009
  fields Physics
and research's language is English
 Authors N. Miller




Ask ChatGPT about the research

We examine the radius evolution of close-in giant planets with a planet evolution model that couples the orbital-tidal and thermal evolution. For 45 transiting systems, we compute a large grid of cooling/contraction paths forward in time, starting from a large phase space of initial semi-major axes and eccentricities. Given observational constraints at the current time for a given planet (semi-major axis, eccentricity, and system age) we find possible evolutionary paths that match these constraints, and compare the calculated radii to observations. We find that tidal evolution has two effects. First, planets start their evolution at larger semi-major axis, allowing them to contract more efficiently at earlier times. Second, tidal heating can significantly inflate the radius when the orbit is being circularized, but this effect on the radius is short-lived thereafter. Often circularization of the orbit is proceeded by a long period while the semi-major axis slowly decreases. Some systems with previously unexplained large radii that we can reproduce with our coupled model are HAT-P-7, HAT-P-9, WASP-10, and XO-4. This increases the number of planets for which we can match the radius from 24 (of 45) to as many as 35 for our standard case, but for some of these systems we are required to be viewing them at a special time around the era of current radius inflation. This is a concern for the viability of tidal inflation as a general mechanism to explain most inflated radii. Also, large initial eccentricities would have to be common. We also investigate the evolution of models that have a floor on the eccentricity, as may be due to a perturber. In this scenario we match the extremely large radius of WASP-12b. (Abridged)



rate research

Read More

The direct detection of new extrasolar planets from high-precision photometry data is commonly based on the observation of the transit signal of the planet as it passes in front of its star. Close-in planets, however, leave additional imprints in the light curve even if they do not transit. These are the so-called phase curve variations that include ellipsoidal, reflection and beaming effects. In Millholland & Laughlin (2017), the authors scrutinized the Kepler database looking for these phase variations from non-transiting planets. They found 60 candidates whose signals were compatible with planetary companions. In this paper, we perform a ground-based follow-up of a sub-sample of these systems with the aim of confirming and characterizing these planets and thus validating the detection technique. We used the CAFE and HERMES instruments to monitor the radial velocity of ten non-transiting planet candidates along their orbits. We additionally used AstraLux to obtain high-resolution images of some of these candidates to discard blended binaries that contaminate the Kepler light curves by mimicking planetary signals. Among the ten systems, we confirm three new hot-Jupiters (KIC8121913 b, KIC10068024 b, and KIC5479689 b) with masses in the range 0.5-2 M$_{rm Jup}$ and set mass constraints within the planetary regime for the other three candidates (KIC8026887b, KIC5878307 b, and KIC11362225 b), thus strongly suggestive of their planetary nature. For the first time, we validate the technique of detecting non-transiting planets via their phase curve variations. We present the new planetary systems and their properties. We find good agreement between the RV-derived masses and the photometric masses in all cases except KIC8121913 b, which shows a significantly lower mass derived from the ellipsoidal modulations than from beaming and radial velocity data.
Jovian planet formation has been shown to be strongly correlated with host star metallicity, which is thought to be a proxy for disk solids. Observationally, previous works have indicated that jovian planets preferentially form around stars with solar and super solar metallicities. Given these findings, it is challenging to form planets within metal-poor environments, particularly for hot Jupiters that are thought to form via metallicity-dependent core accretion. Although previous studies have conducted planet searches for hot Jupiters around metal-poor stars, they have been limited due to small sample sizes, which are a result of a lack of high-quality data making hot Jupiter occurrence within the metal-poor regime difficult to constrain until now. We use a large sample of halo stars observed by TESS to constrain the upper limit of hot Jupiter occurrence within the metal-poor regime (-2.0 $leq$ [Fe/H] $leq$ -0.6). Placing the most stringent upper limit on hot Jupiter occurrence, we find the mean 1-$sigma$ upper limit to be 0.18 $%$ for radii 0.8 -2 R$_{rm{Jupiter}}$ and periods $0.5- 10$ days. This result is consistent with previous predictions indicating that there exists a certain metallicity below which no planets can form.
Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.
200 - Jason H. Steffen 2012
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا