Do you want to publish a course? Click here

Simultaneous MITSuME gRI monitoring of S5 0716+714

194   0   0.0 ( 0 )
 Added by C. S. Stalin
 Publication date 2009
  fields Physics
and research's language is English
 Authors C. S. Stalin




Ask ChatGPT about the research

We present results of our intra-night optical flux monitoring observations of S5 0716+714 done simultaneously in gRI filters. The observations were done using Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) instrument on the 50 cm telescope at the Okayama Astrophysical Observatory over 30 nights between 11 March 2008 and 8 May 2008. Of these 30 nights, 22 nights have continuous (without any break) observations with duration ranging from 1 to 6 hours and hence were considered for intra-night optical variability (INOV). In total we have 4888 datapoints which were simultaneous in gR and I filters. Of the 22 nights considered for INOV, the object showed flux variability on 19 nights with the amplitude of variability in the I-band ranging from ~4% to ~55%. The duty cycle for INOV was thus found to be 83%. No time lag between different bands was noticed on most of the nights, except for 3 nights where the variation in g was found to lead that of the I band by 0.3 to 1.5 hrs. On inter-night timescales, no lag was found between g and I bands. On inter-night timescales as well as intra-night timescales on most of the nights, the amplitude of variability was found to increase toward shorter wavelengths. The flux variations in the different bands were not achromatic, with the blazar tending to become bluer when brighter both on inter-night and intra-night timescales; and this might be attributed to the larger amplitude variation at shorter wavelengths. A clear periodic variation of 3.3 hrs was found on 1 April 2008 and a hint for another possible periodic variability of 4 hrs was found on 31 March 2008. During our 30 days of observations over a 2 month period the source has varied with an amplitude of variability as large as ~80%.



rate research

Read More

In this paper, we report the new results of spectroscopic observations of $gamma$-ray blazar S5 0716+714 from 2019 September to 2020 March with the 2.4 m optical telescope at Lijiang Observatory of Yunnan Observatories. The median cadence of observations is $sim$ 1 day. During the second observation period (Epoch2), the observational data reveal an extremely bright state and a bluer-when-brighter (BWB) chromatism. The BWB trend of Epoch2 differs significantly from that of the first observation period (Epoch1). A significantly brightness-dependent BWB chromatism emerges in the total data of Epoch1 and Epoch2. The BWB trend becomes weaker towards the brighter states, and likely becomes saturated at the highest state. Based on a log-parabolic function, a power-law of synchrotron peak flux and frequency $ u_{rm{p}}$, and a power-law of the curvature of synchrotron spectrum and its $ u_{rm{p}}$, simulation well reproduces the brightness-dependent BWB trend of S5 0716+714. The BWB trend is seemingly controlled by the shift of $ u_{rm{p}}$ with respect to the observational window, and effectively may be dominated by the variations of electron average energy and magnetic field in emitting region.
We have monitored the BL Lacertae object S5 0716+714 simultaneously in the B, R and I bands on three nights in November 2014. The average time resolution is quite high (73s, 34s, 58s for the filters B, R and I), which can help us trace the profile of the variation and search for the short inter-band time delay. Intra-day variability was about 0.1 mag on the first two nights and more than 0.3 mag on the third. A bluer-when-brighter color behavior was found. An clear loop path can be seen on the color-magnitude diagram of the third night, revealing possible time delays between variations at high and low energies. It is the first time that the intra-day spectral hysteresis loop has been found so obviously in the optical band. We used the interpolated cross-correlation function method to further confirm the time delay and calculated the values of lag between light curves at different wavelengths on each night. On the third night, variations in the R and B bands is approximately 1.5 minutes lagging behind the I band. Such optical time delay is probably due to the interplay of different processes of electrons in the jet of the blazar.
165 - B. Rani 2013
The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV - 300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.
110 - C.S. Stalin 2005
We report results of multiband optical monitoring of two well known blazars, S5 0716+714 and BL Lacertae, carried out in 1996 and 2000-01 with an aim to study optical variations on time scales from minutes to hours and longer.The light curves were derived relative to comparison stars present on the CCD frames. Night to night flux variations of >0.1 mag were observed in S5 0716+714 during a campaign of ~2 weeks in 1996.A good correlation between the lightcurves in different optical bands was found for both inter-night and intra-night observations. Two prominent events of intra-night optical variability were detected in S5 0716+714.Each of these rapidly varying segments of the lightcurves trace an exponential flux profile whose rate of variation is the same in both cases. Our long-term monitoring data of S5 0716+714 showed a distinct flare around JD 2451875 which can be identified in the BVRI bands.This flare coincides with the brightest phase recorded during 1994-2001 in the long-term lightcurves reported by Raiteri et al.(2003). No evidence for the bluer when brighter trend was noticed on inter-night and intra-night time scales. On the other hand, our nearly simultaneous multiband observations of BL Lacertae in October 2001 showed flux variations that were not achromatic. This blazar was found to become bluer when brighter on intra-night time scales and there is a hint of the same trend on inter-night time scales. Based on five nights of observations during a week, BL Lacertae showed a peak night-to-night variability of ~0.6 mag in B. Thus, we found that the present observations of the two blazars, reveal a contrasting behaviour in terms of the dependence of spectral hardening with increasing brightness, at least on intra-night, and possibly also on inter-night, time scales.
In order to study short timescale optical variability of $gamma$-ray blazar S5 0716+714, quasi-simultaneous spectroscopic and multi-band photometric observations were performed from 2018 November to 2019 March with the 2.4 m optical telescope located at Lijiang Observatory of Yunnan Observatories. The observed spectra are well fitted with a power-law $F_{lambda}=Alambda ^{-alpha}$ (spectral index $alpha >0$). Correlations found between $dot{alpha}$, $dot{A}$, $dot{A}/A$, $dot{F_{rm{lambda}}}$, and $dot{F_{rm{lambda}}}/F_{rm{lambda}}$ are consistent with the trend of bluer-when-brighter (BWB). textbf{The same case is for colors, magnitudes, color variation rates, and magnitude variation rates of photometric observations.} The variations of $alpha$ lead those of $F_{rm{lambda}}$. Also, the color variations lead the magnitude variations. The observational data are mostly distributed in the I(+,+) and III(-,-) quadrants of coordinate system. Both of spectroscopic and photometric observations show BWB behaviors in S5 0716+714. The observed BWB may be explained by the shock-jet model, and its appearance may depend on the relative position of the observational frequency ranges with respect to the synchrotron peak frequencies, e.g., at the left of the peak frequencies. textbf{Fractional variability amplitudes are $F_{rm{var}}sim 40%$ for both of spectroscopic and photometric observations. Variations of $alpha$ indicate variations of relativistic electron distribution producing the optical spectra. }
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا