No Arabic abstract
We determine photometric metal abundance estimates for individual main-sequence stars in the Virgo Overdensity (VOD), which covers almost 1000 deg^2 on the sky, based on a calibration of the metallicity sensitivity of stellar isochrones in the gri filter passbands using field stars with well-determined spectroscopic metal abundances. Despite the low precision of the method for individual stars, we derive [Fe/H] = -2.0 +/-0.1 (internal) +/-0.5 (systematic) for the metal abundance of the VOD from photometric measurements of 0.7 million stars in the Northern Galactic hemisphere with heliocentric distances from ~10 kpc to ~20 kpc. The metallicity of the VOD is indistinguishable, within Delta [Fe/H] < 0.2, from that of field halo stars covering the same distance range. This initial application suggests that the SDSS gri passbands can be used to probe the properties of main-sequence stars beyond ~10 kpc, complementing studies of nearby stars from more metallicity-sensitive color indices that involve the u passband.
We suggest that the Virgo Overdensity (VOD) of stars in the stellar halo is the result of a radial dwarf galaxy merger that we call the Virgo Radial Merger. Because the dwarf galaxy passed very near to the Galactic center, the debris has a large range of energies but nearly zero $L_z$ angular momentum. The debris appears to extend from 5 to 50 kpc from the Sun in the Virgo region. We connect different parts of this merger debris to the Perpendicular and Parallel Streams (the Virgo Stellar Stream is associated with either or both of these streams), the Hercules-Aquila Cloud (HAC), and possibly the Eridanus Phoenix Overdensity (EriPhe). This radial merger can explain the majority of the observed moving groups of RR Lyrae and blue horizontal branch stars that have previously been identified in Virgo. This merger also produces debris in the Solar neighborhood similar to that identified as the Gaia-Enceladus or it Gaia-sausage merger. Orbits are provided for components of the Virgo Radial Merger progenitor and for debris that appears to be related to the Cocytos Stream, which was also recovered in the Virgo region.
We use a combination of spatial distribution and radial velocity to search for halo sub-structures in a sample of 412 RR Lyrae stars (RRLS) that covers a $sim 525$ square degrees region of the Virgo Overdensity (VOD) and spans distances from the Sun from 4 to 75 kpc. With a friends-of-friends algorithm we identified six high significance groups of RRLS in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high significance and 3 lower significance groups have distances between $sim 10$ and 20 kpc, which places them with the distance range attributed by others to the VOD. The largest of these is the Virgo Stellar Stream (VSS) at 19 kpc, which has 18 RRLS, a factor of 2 increase over the number known previously. While these VOD groups are distinct according to our selection cirteria, their overlap in position and distance, and, in a few cases, similarity in radial velocity are suggestive that they may not all stem separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sgr stream is a very obvious feature in the background of the VOD at a mean distance of 44 kpc. Two additional high significant groups were detected at distances $>40$ kpc. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.
We present deep CMDs for two Subaru Suprime-Cam fields in the Virgo Stellar Stream(VSS)/Virgo Overdensity(VOD) and compare them to a field centred on the highest concentration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation. A prominent population of MS stars is detected in all three fields and can be traced as faint as g~24 mag. Using theoretical isochrone fitting we derive an age of 9.1(+1.0;-1.1)Gyr, a median abundance of [Fe/H]=-0.70 (+0.15; -0.20)dex and d_helio of 30.9+-3.0kpc for the MS of the Sgr Stream Branch A. The dominant main sequence populations in the two VSS/VOD fields (Lsun ~265 deg, Bsun ~13 deg) are located at a mean distance of 23.3+-1.6kpc and have an age ~8.2Gyr and an abundance [Fe/H]=-0.67(+0.16;-0.12)dex similar to the Sgr Stream stars. These parameters are also in good agreement with the age of the main population in the Sagittarius dwarf (8.0+-1.5Gyr). They also agree with the peak in the metallicity distribution of 2-3Gyr old M-giants, [Fe/H] ~ -0.6dex, in the Sgr leading arm north. We then compare the results from the VSS/VOD fields with the Sgr Tidal Stream model by Law & Majewski based on a triaxial Galactic halo that is calibrated with SDSS Sgr A-branch and 2MASS M-giant stars. We find that the most prominent feature in the CMDs, the MS population at 23kpc, is not explained by the model. Instead the model predicts in these directions a low density filamentary structure of Sgr debris stars at ~9kpc and a slightly higher concentration of Sgr stars spread from 42-53kpc. At best there is only marginal evidence for the presence of these populations in our data. Our findings then suggest that while there are probably some Sgr debris stars present, the dominant stellar population in the VOD originates from a different halo structure that has almost identical age and metallicity as some sections of the Sgr tidal stream.
We present the results of VLT-MUSE integral field spectroscopy of SECCO1, a faint, star-forming stellar system recently discovered as the stellar counterpart of an Ultra Compact High Velocity Cloud (HVC274.68+74.0), very likely residing within a substructure of the Virgo cluster of galaxies. We have obtained the radial velocity of a total of 38 individual compact sources identified as HII regions in the main and secondary body of the system, and derived the metallicity for 18 of them. We provide the first direct demonstration that the two stellar bodies of SECCO1 are physically associated and that their velocities match the HI velocities. The metallicity is quite uniform over the whole system, with a dispersion sigma_12+log(O/H/)=0.08, lower than the uncertainty on individual metallicity estimates. The mean abundance, 12+log(O/H)=8.44, is much higher than the typical values for local dwarf galaxies of similar stellar mass. This strongly suggests that the SECCO~1 stars were born from a pre-enriched gas cloud, possibly stripped from a larger galaxy. Using archival HST images we derive a total stellar mass of ~1.6 X 10^5 M_sun for SECCO1, confirming that it has a very high HI to stellar mass ratio for a dwarf galaxy, M_HI/M_*~ 100. The star formation rate, derived from the H_alpha flux is a factor of more than 10 higher than in typical dwarf galaxies of similar luminosity.
We present the updated photometric calibration of the twelve optical passbands for the Javalambre Photometric Local Universe Survey (J-PLUS) second data release (DR2), comprising 1088 pointings of two square degrees, and study the systematic impact of metallicity in the stellar locus technique. The [Fe/H] metallicity from LAMOST DR5 for 146184 high-quality calibration stars, defined with S/N > 10 in J-PLUS passbands and S/N > 3 in Gaia parallax, was used to compute the metallicity-dependent stellar locus (ZSL). The initial homogenization of J-PLUS photometry, performed with a unique stellar locus, was refined by including the metallicity effect in colours via the ZSL. The variation of the average metallicity along the Milky Way produces a systematic offset in J-PLUS calibration. This effect is well above 1% for the bluer passbands and amounts 0.07, 0.07, 0.05, 0.03, and 0.02 mag in u, J0378, J0395, J0410, and J0430, respectively. We modelled this effect with the Milky Way location of the J-PLUS pointing, providing also an updated calibration for those observations without LAMOST information. The estimated accuracy in the calibration after including the metallicity effect is at 1% level for the bluer J-PLUS passbands and below for the rest. We conclude that photometric calibration with the stellar locus technique is prone to significant systematic bias along the Milky Way location for passbands bluer than lambda = 4500 A. The updated calibration method for J-PLUS DR2 reaches 1-2% precision and 1% accuracy for twelve optical filters within an area of 2176 square degrees.