A procedure to solve few-body problems is developed which is based on an expansion over a small parameter. The parameter is the ratio of potential energy to kinetic energy for states having not small hyperspherical quantum numbers, K>K_0. Dynamic equations are reduced perturbatively to equations in the finite-dimension subspace with Kle K_0. Contributions from states with K>K_0 are taken into account in a closed form, i.e. without an expansion over basis functions. Estimates on efficiency of the approach are presented.