Do you want to publish a course? Click here

Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

165   0   0.0 ( 0 )
 Added by Denis Artemenkov
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions - nuclear white stars. A complete pattern of therelativistic dissociation of a $^8$B nucleus with target fragment accompaniment is presented. Relativistic dissociation $^{9}$Be$to2alpha$ is explored using significant statistics and a relative contribution of $^{8}$Be decays from 0$^+$ and 2$^+$ states is established. Target fragment accompaniments are shown for relativistic fragmentation $^{14}$N$to$3He+H and $^{22}$Ne$to$5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to break-ups on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.



rate research

Read More

Possibilities of the nuclear emulsion technique for the study of the systems of several relativistic fragments produced in the peripheral interactions of relativistic nuclei are discussed. The interactions of the $^{10}$B and $^{9}$Be nuclei in emulsion are taken as an example to show the manifestation of the cluster degrees of freedom in relativistic fragmentation. For the case of the relativistic $^{9}$Be nucleus dissociation it is shown that exact angular measurements play a crucial role in the restoration of the excitation spectrum of the alpha particle fragments. The energy calibration of the angular measurements by the $^{9}$Be nucleus enables one to conclude reliably about the features of internal velocity distributions in more complicated systems of relativistic $alpha$ particles.
The results of investigations dealing with the charge topology of the fragments produced in peripheral dissociation of relativistic $^8$B nuclei in emulsion are presented. 55 events of peripheral dissociation of the $^8$B nucleus were selected from the events which do not involve the production of the target-nucleus fragments and mesons (`` whiterqrq ~stars). A leading contribution of the $^8$B$to^7$Be+p mode having the lowest energy threshold was revealed on the basis of those events. Information on the relative probability of dissociation modes with a larger multiplicity was obtained. The dissociation of a $^7$Be core in $^8$B indicates an analogy with that of the free $^7$Be nucleus.par The transverse momentum distributions of the fragments from the $^8$B$to^7$Be+p dissociation mode were obtained. Their small average value, $<$P$_t>$= 52 MeV/c, in the c.m.s. suggests a low binding energy of the external proton in the $^8$B nucleus. An indication for a strong azimuthal correlation of the $^7$Be and p fragments was got.
The results of investigations of the dissociation of a $^{14}$N nucleus of momentum 2.86~A~GeV/c in photo-emulsion are presented. The main characteristics of these reactions, that is the cross sections for various fragmentation channels, are given. The fragmentation was analyzed by means of an invariant approach. The momentum and correlation characteristics of $alpha$ particles for the $^{14}$N$to3alpha$+X channel in the laboratory system and the rest systems of 3$alpha$ particles were considered. The results obtained for the $^{14}$N nucleus are compared with similar data for the $^{12}$C and $^{16}$O nuclei.
indent First results of the exposure of nuclear track emulsions in a secondary beam enriched by $^9$C nuclei at energy of 1.2 A GeV are described. The presented statistics corresponds to the most peripheral $^9$C interactions. For the first time a dissociation $^9$C $to3^3$He not accompanied by target fragments and mesons is identified.par
Status and prospects of nuclear clustering studies by dissociation of relativistic nuclei in nuclear track emulsion are presented. The unstable $^{8}$Be and $^{9}$B nuclei are identified in dissociation of the isotopes $^{9}$Be, $^{10}$B, $^{10}$C and $^{11}$C, and the Hoyle state in the cases $^{12}$C and $^{16}$O. On this ground searching for the Hoyle state and more complex $alpha$-particle states in the dissociation of the heavier nuclei is suggested. A detailed study of a low-density baryonic matter arising in dissociation of the heaviest nuclei is forthcoming long-term problem. An analysis of nuclear fragmentation induced by relativistic muons is proposed to examine the mechanism dissociation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا