Do you want to publish a course? Click here

Some optimal criteria of model-robustness for two-level non-regular fractional factorial designs

431   0   0.0 ( 0 )
 Added by Satoshi Aoki
 Publication date 2009
and research's language is English
 Authors Satoshi Aoki




Ask ChatGPT about the research

We present some optimal criteria to evaluate model-robustness of non-regular two-level fractional factorial designs. Our method is based on minimizing the sum of squares of all the off-diagonal elements in the information matrix, and considering expectation under appropriate distribution functions for unknown contamination of the interaction effects. By considering uniform distributions on symmetric support, our criteria can be expressed as linear combinations of $B_s(d)$ characteristic, which is used to characterize the generalized minimum aberration. We give some empirical studies for 12-run non-regular designs to evaluate our method.



rate research

Read More

It is known that a Markov basis of the binary graph model of a graph $G$ corresponds to a set of binomial generators of cut ideals $I_{widehat{G}}$ of the suspension $widehat{G}$ of $G$. In this paper, we give another application of cut ideals to statistics. We show that a set of binomial generators of cut ideals is a Markov basis of some regular two-level fractional factorial design. As application, we give a Markov basis of degree 2 for designs defined by at most two relations.
A new class of two-level non-regular fractional factorial designs is defined. We call this class an {it affinely full-dimensional factorial design}, meaning that design points in the design of this class are not contained in any affine hyperplane in the vector space over $mathbb{F}_2$. The property of the indicator function for this class is also clarified. A fractional factorial design in this class has a desirable property that parameters of the main effect model are simultaneously identifiable. We investigate the property of this class from the viewpoint of $D$-optimality. In particular, for the saturated designs, the $D$-optimal design is chosen from this class for the run sizes $r equiv 5,6,7$ (mod 8).
The minimum aberration criterion has been frequently used in the selection of fractional factorial designs with nominal factors. For designs with quantitative factors, however, level permutation of factors could alter their geometrical structures and statistical properties. In this paper uniformity is used to further distinguish fractional factorial designs, besides the minimum aberration criterion. We show that minimum aberration designs have low discrepancies on average. An efficient method for constructing uniform minimum aberration designs is proposed and optimal designs with 27 and 81 runs are obtained for practical use. These designs have good uniformity and are effective for studying quantitative factors.
The highly influential two-group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal control of the marginal false discovery rate (mFDR), in the sense that it provides maximal power (expected true discoveries) subject to mFDR control, is known to be achieved by thresholding the local false discovery rate (locFDR), i.e., the probability of the hypothesis being null given the set of test statistics, with a fixed threshold. We address the challenge of controlling optimally the popular false discovery rate (FDR) or positive FDR (pFDR) rather than mFDR in the general two-group model, which also allows for dependence between the test statistics. These criteria are less conservative than the mFDR criterion, so they make more rejections in expectation. We derive their optimal multiple testing (OMT) policies, which turn out to be thresholding the locFDR with a threshold that is a function of the entire set of statistics. We develop an efficient algorithm for finding these policies, and use it for problems with thousands of hypotheses. We illustrate these procedures on gene expression studies.
Optimal two-treatment, $p$ period crossover designs for binary responses are determined. The optimal designs are obtained by minimizing the variance of the treatment contrast estimator over all possible allocations of $n$ subjects to $2^p$ possible treatment sequences. An appropriate logistic regression model is postulated and the within subject covariances are modeled through a working correlation matrix. The marginal mean of the binary responses are fitted using generalized estimating equations. The efficiencies of some crossover designs for $p=2,3,4$ periods are calculated. The effect of misspecified working correlation matrix on design efficiency is also studied.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا