No Arabic abstract
In this paper we present chromospheric emission levels of the solar-type stars in the young open clusters IC 2391 and IC 2602. High resolution spectroscopic data were obtained for over 50 F, G, and K stars from these clusters over several observing campaigns using the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Unlike older clusters, the majority (28/52) of the solar-type stars in the two clusters are rapid-rotators (vsini > 20 km/s) with five of the stars being classified as ultra-rapid rotators (vsini > 100 km/s). The emission levels in the Calcium infrared triplet lines were then used as a measure of the chromospheric activity of the stars. When plotted against Rossby number (NR) the stars chromospheric emission levels show a plateau in the emission for Log(NR) < -1.1 indicating chromospheric saturation similar to the coronal saturation seen in previously observed X-ray emission from the same stars. However, unlike the coronal emission, the chromospheric emission of the stars show little evidence of a reduction in emission (i.e. supersaturation) for the ultra-rapid rotators in the clusters. Thus we believe that coronal supersaturation is not the result of an overall decrease in magnetic dynamo efficiency for ultra-rapid rotators.
We present X-ray spectral and timing analysis of members of the young open cluster IC 2391 observed with the XMM-Newton observatory. We detected 99 X-ray sources by analysing the summed data obtained from MOS1, MOS2 and pn detectors of the EPIC camera; 24 of them are members, or probable members, of the cluster. Stars of all spectral types have been detected, from the early-types to the late-M dwarfs. Despite the capability of the instrument to recognize up to 3 thermal components, the X-ray spectra of the G, K and M members of the cluster are well described with two thermal components (at kT$_1 sim$ 0.3-0.5 keV and kT$_2 sim$ 1.0-1.2 keV respectively) while the X-ray spectra of F members require only a softer 1-T model. The Kolmogorov-Smirnov test applied to the X-ray photon time series shows that approximately 46% of the members of IC 2391 are variable with a confidence level $>$99%. The comparison of our data with those obtained with ROSAT/PSPC, nine years earlier, and ROSAT/HRI, seven years earlier, shows that there is no evidence of significant variability on these time scales, suggesting that long-term variations due to activity cycles similar to that on the Sun are not common, if present at all, among these young stars.
We have obtained new photometry and intermediate resolution ($Delta lambda = 2.7$ AA ) spectra of 19 of these objects (14.9 $le$ $I_c$ $le$ 17.5) in order to confirm cluster membership. We identify 15 of our targets as likely cluster members based on their $VRI$ photometry, spectral types, radial velocity, and H$alpha$ emission strengths. Higher S/N spectra were obtained for 8 of these probable cluster members in order to measure the strength of the lithium 6708 AA doublet and thus obtain an estimate of the clusters age. One of these 8 stars has a definite lithium detection and two other (fainter) stars have possible lithium detections. A color-magnitude diagram for our program objects shows that the lithium depletion boundary in IC~2391 is at $I_c$=16.2. Using recent theoretical model predictions, we derive an age for IC~2391 of 53$pm$5 Myr. While this is considerably older than the age most commonly attributed for this cluster ($sim$35 Myr) this result for IC~2391 is comparable those recently derived for the Pleiades and Alpha Persei clusters and can be explained by new models for high mass stars that incorporate a modest amount of convective core overshooting.
Classical chemical analyses may be affected by systematic errors that would cause observed abundance differences between dwarfs and giants. For some elements, however, the abundance difference could be real. We address the issue by observing 2 solar--type dwarfs in NGC 5822 and 3 in IC 4756, and comparing their composition with that of 3 giants in either of the aforementioned clusters. We determine iron abundance and stellar parameters of the dwarf stars, and the abundances of calcium, sodium, nickel, titanium, aluminium, chromium, silicon and oxygen for both the giants and dwarfs. We acquired UVES high-resolution, of high signal--to--noise ratio (S/N) spectra. The width of the cross correlation profiles was used to measure rotation velocities. For abundance determinations, the standard equivalent width analysis was performed differentially with respect to the Sun. For lithium and oxygen, we derived abundances by comparing synthetic spectra with observed line features. We find an iron abundance for dwarf stars equal to solar to within the margins of error for IC 4756, and slightly above for NGC 5822 ([Fe/H]= 0.01 and 0.05 dex respectively). The 3 stars in NG 4756 have lithium abundances between Log N(Li) 2.6 and 2.8 dex, the two stars in NGC 5822 have Log N(Li) ~ 2.8 and 2.5, respectively. For sodium, silicon, and titanium, we show that abundances of giants are significantly higher than those of the dwarfs of the same cluster (about 0.15, 0.15, and 0.35 dex).
IC 1274 is a faintly luminous nebula lying on the near surface of the Lynds 227 (L227) molecular cloud. Four luminous, early-type (B0-B5) stars are located within a spherical volume ~5 in diameter that appears to be clear of heavy obscuration. Approximately centered in the cleared region is the B0 V star HD 166033, which is thought to be largely responsible for the cavitys excavation. Over 80 H-alpha emission sources brighter than V~21 have been identified in the region. More than half of these are concentrated in IC 1274 and are presumably members of a faint T Tauri star population. Chandra Advanced CCD Imaging Spectrometer (ACIS) imaging of a nearby suspected pulsar and time-variable gamma-ray source (GeV J1809-2327) detected 21 X-ray sources in the cluster vicinity, some of which are coincident with the early-type stars and H-alpha emitters in IC 1274. Deep (V~22) optical BVRI photometry has been obtained for the cluster region. A distance of 1.82 +/- 0.3 kpc and a mean extinction of Av ~1.21 +/- 0.2 mag follow from photometry of the early-type stars. Using pre-main-sequence evolutionary models, we derive a median age for the H-alpha emitters and X-ray sources of ~1 Myr; however, a significant dispersion is present. Our interpretation of the structure of IC 1274 is that the early-type stars formed recently and are in the process of dispersing the molecular gas on the near surface of L227. The displaced material was driven against what remains of the molecular cloud to the east, enabling the formation of the substantial number of T Tauri stars found there. We identify a V~21.5 star very near the position of X-ray source 5, the assumed gamma-ray source and young pulsar candidate. The lack of distinctive characteristics for this source, however, coupled with the density of faint stars in this region suggest that this may be a random superposition.
Stellar magnetic activity decays over the main-sequence life of cool stars due to the stellar spin-down driven by magnetic braking. The evolution of chromospheric emission is well-studied for younger stars, but difficulties in determining the ages of older cool stars on the main sequence have complicated such studies for older stars in the past. Here we report on chromospheric Ca II H and K line measurements for 26 main-sequence cool stars with asteroseismic ages older than a gigayear and spectral types F and G. We find that for the G stars and the cooler F-type stars which still have convective envelopes the magnetic activity continues to decrease at stellar ages above one gigayear. Our magnetic activity measurements do not show evidence for a stalling of the magnetic braking mechanism, which has been reported for stellar rotation versus age for G and F type stars. We also find that the measured RHK indicator value for the cool F stars in our sample is lower than predicted by common age-activity relations that are mainly calibrated on data from young stellar clusters. We conclude that, within individual spectral type bins, chromospheric magnetic activity correlates well with stellar age even for old stars.