Do you want to publish a course? Click here

Radio-frequency dressing of multiple Feshbach resonances

123   0   0.0 ( 0 )
 Added by David S. Hall
 Publication date 2009
  fields Physics
and research's language is English
 Authors A.M. Kaufman




Ask ChatGPT about the research

We demonstrate and theoretically analyze the dressing of several proximate Feshbach resonances in Rb-87 using radio-frequency (rf) radiation. We present accurate measurements and characterizations of the resonances, and the dramatic changes in scattering properties that can arise through the rf dressing. Our scattering theory analysis yields quantitative agreement with the experimental data. We also present a simple interpretation of our results in terms of rf-coupled bound states interacting with the collision threshold.

rate research

Read More

Experimental control of magnetic Fano-Feshbach resonances in ultracold $^{40}$K Fermi gases, using radio-frequency (RF) fields, is demonstrated. Spectroscopic measurements are made of three molecular levels within 50 MHz of the atomic continuum, along with their variation with magnetic field. Modifying the scattering properties by an RF field is shown by measuring the loss profile versus magnetic field. This work provides the high accuracy locations of ground molecular states near the s-wave Fano-Feshbach resonance, which can be used to study the crossover regime from a Bose-Einstein condensate to a Bardeen-Cooper-Schrieffer superfluid in presence of an RF field.
Employing a short-range two-channel description we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a new parameterization of the energy-dependent scattering length which differs from the one previously employed. We validate the model by comparison to full numerical calculations for Li-Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.
We discuss the stability of homonuclear and heteronuclear mixtures of 3He and 4He atoms in the metastable 2^3S_1 state (He*) and predict positions and widths of Feshbach resonances by using the Asymptotic Bound-state Model (ABM). All calculations are performed without fit parameters, using emph{ab-initio} calculations of molecular potentials. One promising very broad Feshbach resonance (Delta B=72.9^{+18.3}_{-19.3} mT) is found that allows for tuning of the inter-isotope scattering length.
We present an Asymptotic Bound-state Model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body Hamiltonian, and on asymptotic properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary parameters are the least bound state energies and actual potentials are not used. The complexity of the model can be stepwise increased by introducing threshold effects, multiple vibrational levels and additional potential parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb system are presented.
We report evidence for spin-rotation coupling in $p$-wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs lifting the commonly observed degeneracy of states with equal absolute value of orbital-angular-momentum projection on the external magnetic field. By employing magnetic field dependent atom-loss spectroscopy we find triplet structures in $p$-wave resonances. Comparison with coupled-channel calculations, including contributions from both spin-spin and spin-rotation interactions, yields a spin-rotation coupling parameter $|gamma|=0.566(50)times10^{-3}$. Our findings highlight the potential of Feshbach resonances in revealing subtle molecular couplings and providing precise information on electronic and nuclear wavefunctions, especially at short internuclear distance. The existence of a non-negligible spin-rotation splitting may have consequences for future classifications of $p$-wave superfluid phases in spin-polarized fermions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا