Empirical Estimate of Lyman-alpha Escape Fraction in a Statistical Sample of Lyman-alpha Emitters


Abstract in English

The Lyman-alpha (Lya) recombination line is a fundamental tool for galaxy evolution studies and modern observational cosmology. However, subsequent interpretations are still prone to a number of uncertainties. Besides numerical efforts, empirical data are urgently needed for a better understanding of Lya escape process. We empirically estimate the Lyman-alpha escape fraction fesc(Lya) in a statistically significant sample of z ~ 0 - 0.3 galaxies in order to calibrate high-redshift Lyman-alpha observations. An optical spectroscopic follow-up of a sub-sample of 24 Lyman-alpha emitters (LAEs) detected by GALEX at z ~ 0.2-0.3, combined with a UV-optical sample of local starbursts, both with matched apertures, allow us to quantify the dust extinction through Balmer lines, and to estimate the Lyman-alpha escape fraction from the Halpha flux corrected for extinction in the framework of the recombination theory. The global escape fraction of Lyman-alpha radiation spans nearly the entire range of values, from 0.5 to 100 %, and fesc(Lya) clearly decreases with increasing nebular dust extinction E(B-V). Several objects show fesc(Lya) greater than fesc(continuum) which may be an observational evidence for clumpy ISM geometry or for an aspherical ISM. Selection biases and aperture size effects may still prevail between z ~ 0.2-0.3 LAEs and local starbursts, which may explain the difference observed for fesc(Lya).

Download