Do you want to publish a course? Click here

No Neutron Star Companion To The Lowest Mass SDSS White Dwarf

133   0   0.0 ( 0 )
 Added by Marcel Ag\\\"ueros
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 +/- 0.05 (M ~ 0.17 M_sun; Kilic et al. 2007a,b). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638s companion showed that it must be a compact object with a mass >= 0.28 M_sun (Kilic 2007b). Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638s companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.

rate research

Read More

We present the discovery of a white dwarf companion at 3.6 from GJ3346, a nearby ($pisim$42 mas) K star observed with SPHERE@VLT as part of an open time survey for faint companions to objects with significant proper motion discrepancies ($Deltamu$) between Gaia DR1 and Tycho-2. Syrius-like systems like GJ3346AB, which include a main sequence star and a white dwarf, can be difficult to detect because of the intrinsic faintness of the latter. They have, however, been found to be common contaminants for direct imaging searches. White dwarfs have in fact similar brightness to sub-stellar companions in the infrared, while being much brighter in the visible bands like those used by Gaia. Combining our observations with Gaia DR2 and with several additional archival data sets, we were able to fully constrain the physical properties of GJ3346B, such as its effective temperature (11$times$10$^3pm$500 K) as well as the cooling age of the system (648$pm$58 Myrs). This allowed us to better understand the system history and to partially explains the discrepancies previously noted in the age indicators for this objects. Although further investigation is still needed, it seems that GJ3346, which was previously classified as young, is in fact most likely to be older than 4 Gyrs. Finally, given that the mass (0.58$pm$0.01$M_{odot}$)} and separation (85 au) of GJ3346B are compatible with the observed $Deltamu$, this discovery represents a further confirmation of the potential of this kind of dynamical signatures as selection methods for direct imaging surveys targeting faint, sub-stellar companions.
We report on the results of a 4-year timing campaign of PSR~J2222$-0137$, a 2.44-day binary pulsar with a massive white dwarf (WD) companion, with the Nanc{c}ay, Effelsberg and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass $m_{p}=1.76,pm,0.06,M_odot$ and a WD mass $m_{c},=,1.293,pm,0.025, M_odot$. We also measure the rate of advance of periastron for this system, which is marginally consistent with the GR prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little ($< , 10^{-2} , M_odot$) mass accretion onto the neutron star (NS); hence, the current pulsar mass is, within uncertainties, its birth mass; the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR~J2222$-0137$ puts that system into a poorly tested parameter range.
We present the first results from SWARMS (Sloan White dwArf Radial velocity data Mining Survey), an ongoing project to identify compact white dwarf (WD) binaries in the spectroscopic catalog of the Sloan Digital Sky Survey. The first object identified by SWARMS, SDSS 1257+5428, is a single-lined spectroscopic binary in a circular orbit with a period of 4.56 hr and a semiamplitude of 322.7+-6.3 km/s. From the spectrum and photometry, we estimate a WD mass of 0.92(+0.28,-0.32) Msun. Together with the orbital parameters of the binary, this implies that the unseen companion must be more massive than 1.62(+0.20,-0.25) Msun, and is in all likelihood either a neutron star or a black hole. At an estimated distance of 48(+10,-19) pc, this would be the closest known stellar remnant of a supernova explosion.
We present a new catalog of spectroscopically-confirmed white dwarf stars from the Sloan Digital Sky Survey Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent a more than factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalog based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log(g) if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.
64 - S. Dai , M. C. Smith , S. Wang 2017
We report identification of the optical counterpart to the companion of the millisecond pulsar J2317+1439. At the timing position of the pulsar, we find an object with $g=22.96pm0.05$, $r=22.86pm0.04$ and $i=22.82pm0.05$. The magnitudes and colors of the object are consistent with it being a white dwarf. By comparing with white dwarf cooling models, we estimate that it has a mass of $0.39^{+0.13}_{-0.10}$ M$_{odot}$, an effective temperature of $8077^{+550}_{-470}$ K and a cooling age of $10.9pm0.3$ Gyr. Combining our results with published constraints on the orbital parameters obtained through pulsar timing, we estimate the pulsar mass to be $3.4^{+1.4}_{-1.1}$ M$_{odot}$. Although the constraint on the pulsar mass is still weak, there is a significant possibility that the pulsar could be more massive than two solar mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا