Do you want to publish a course? Click here

Field dependent competing magnetic ordering in multiferroic Ni3V2O8

232   0   0.0 ( 0 )
 Added by Anil Singh
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The geometrically frustrated magnet Ni3V2O8 undergoes a series of competing magnetic ordering at low temperatures. Most importantly, one of the incommensurate phases has been reported to develop a ferroelectric correlation caused by spin frustration. Here we report an extensive thermodynamic, dielectric and magnetic study on clean polycrystalline samples of this novel multiferroic compound. Our low temperature specific heat data at high fields up to 14 Tesla clearly identify the development of a new magnetic field induced phase transition below 2 K that shows signatures of simultaneous electric ordering. We also report temperature and field dependent dielectric constant that enables us to quantitatively estimate the strength of magneto-electric coupling in this improper ferroelectric material.



rate research

Read More

We present powder and single-crystal neutron diffraction and bulk measurements of the Kagome-staircase compound Ni3V2O8 (NVO) in fields up to 8.5T applied along the c-direction. (The Kagome plane is the a-c plane.) This system contains two types of Ni ions, which we call spine and cross-tie. Our neutron measurements can be described with the paramagnetic space group Cmca for T < 15K and each observed magnetically ordered phase is characterized by the appropriate irreducible representation(s). Our zero-field measurements show that at T_PH=9.1K NVO undergoes a transition to an incommensurate order which is dominated by a longitudinally-modulated structure with the spine spins mainly parallel to the a-axis. Upon further cooling, a transition is induced at T_HL=6.3K to an elliptically polarized incommensurate structure with both spine and cross-tie moments in the a-b plane. At T_LC=4K the system undergoes a first-order phase transition, below which the magnetic structure is a commensurate antiferromagnet with the staggered magnetization primarily along the a-axis and a weak ferromagnetic moment along the c-axis. A specific heat peak at T_CC=2.3K indicates an additional transition, which we were however not able to relate to a change of the magnetic structure. Neutron, specific heat, and magnetization measurements produce a comprehensive temperature-field phase diagram. The symmetries of the two incommensurate magnetic phases are consistent with the observation that only one phase has a spontaneous ferroelectric polarization. All the observed magnetic structures are explained theoretically using a simplified model Hamiltonian, involving competing nearest- and next-nearest-neighbor exchange interactions, spin anisotropy, Dzyaloshinskii-Moriya and pseudo-dipolar interactions.
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.
Electric control of multiferroic domains is demonstrated through polarized magnetic neutron diffraction. Cooling to the cycloidal multiferroic phase of Ni3V2O8 in an electric field (E) causes the incommensurate Bragg reflections to become neutron spin polarizing, the sense of neutron polarization reversing with E. Quantitative analysis indicates the E-treated sample has handedness that can be reversed by E. We further show close association between cycloidal and ferroelectric domains through E-driven spin and electric polarization hysteresis. We suggest that definite cycloidal handedness is achieved through magneto-elastically induced Dzyaloshinskii-Moriya interactions.
The ZFC and FC magnetization dependence on temperature was measured for BiFeO3 ceramics at the applied magnetic field up to H=10T in 2K-1000K range. The antiferromagnetic order was detected from the hysteresis loops below the Neel temperature TN=646K. In the low magnetic field range there is an anomaly in M(H), probably due to the field-induced transition from circular cycloid to the anharmonic cycloid. At high field limit we observe the field-induced transition to the homogeneous spin order. From the M(H) dependence we deduce that above the field Ha the spin cycloid becomes anharmonic which causes nonlinear magnetization, and above the field Hc the cycloid vanishes and the system again exhibits linear magnetization M(H). The anomalies in the electric properties, which are manifested within the 640K-680K range, coincide to the anomaly in the magnetization M(T) dependence, which occurs in the vicinity of TN. We propose to ascribe this coincidence to the critical behaviour of the chemical potential, related to the magnetic phase transition.
Two-dimensional (2D) chromium tellurides have attracted considerable research interest for their high Curie temperatures. Their magnetic properties have been found diverse in various experiments, the understanding of which however remains limited. In this work, we report that the magnetic ordering of ultrathin chromium tellurides is structure dependent and can be tuned by external strain. Based on first-principles calculations and Monte Carlo simulations, we show long-range stable magnetism with high and low Curie temperature, and short-range magnetism in 2D Cr5Te8, CrTe2, and Cr2Te3 layers, respectively. We further find that ferromagnetic-to-antiferromagnetic transition can be realized by 2% compressive strain for CrTe2 and 2% tensile strain for Cr2Te3, and their magnetic easy axis is tuned from out-of-plane to in-plane by the medium tensile and compressive strain. This strain dependent magnetic coupling is found to be related to Cr-Cr direct exchange and the change of magnetic anisotropy is understood by the atom and orbital resolved magnetic anisotropy energy and second order perturbation theory. Our results reveal the important roles of the structure and strain in determining the magnetic ordering in 2D chromium telluride, shedding light on understanding of the diverse magnetic properties observed in experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا