Do you want to publish a course? Click here

Environment effects on the electric conductivity of the DNA

149   0   0.0 ( 0 )
 Added by Victor Malyshev
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical analysis of the environment effects on charge transport in double-stranded synthetic poly(G)-poly(C) DNA molecules attached to two ideal leads. Coupling of the DNA to the environment results in two effects: (i) localization of carrier functions due to the static disorder and (ii) phonon-induced scattering of the carrier between these localized states, resulting in hopping conductivity. A nonlinear Pauli master equation for populations of localized states is used to describe the hopping transport and calculate the electric current as a function of the applied bias. We demonstrate that, although the electronic gap in the density of states shrinks as the disorder increases, the voltage gap in the $I-V$ characteristics becomes wider. Simple physical explanation of this effect is provided.



rate research

Read More

We have measured temperature dependent (between 20 and 80 C) electrical conductivity and molecular structure (Raman spectroscopy) of DNA-lipid cast film. Our findings show that the conductivity is strongly influenced by premelting effects in the molecular structure starting near physiological temperatures (~40 C), prior to the global DNA denaturation.
We study by simulation and theory how the addition of insulating spherical particles affects the conductivity of fluids of conducting rods, modeled by spherocylinders. The electrical connections are implemented as tunneling processes, leading to a more detailed and realistic description than a discontinuous percolation approach. We find that the spheres enhance the tunneling conductivity for a given concentration of rods and that the enhancement increases with rod concentration into the regime where the conducting network is well established. By reformulating the network of rods using a critical path analysis, we quantify the effect of depletion-induced attraction between the rods due to the spheres. Furthermore, we show that our conductivity data are quantitatively reproduced by an effective medium approximation, which explicitly relates the system tunneling conductance to the structure of the rod-sphere fluid.
In computing electric conductivity based on the Kubo formula, the vertex corrections describe such effects as anisotropic scattering and quantum interference and are important to quantum transport properties. These vertex corrections are obtained by solving Bethe-Salpeter equations, which can become numerically intractable when a large number of k-points and multiple bands are involved. We introduce a non-iterative approach to the vertex correction based on rank factorization of the impurity vertices, which significantly alleviate the computational burden. We demonstrate that this method can be implemented along with effective Hamiltonians extracted from electronic structure calculations on perfect crystals, thereby enabling quantitative analysis of quantum effects in electron conduction for real materials.
This chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.
The dielectrophoresis method for trapping and attaching nanoscale double-stranded DNA between nanoelectrodes was developed. The method gives a high yield of trapping single or a few molecules only which enables transport measurements at the single molecule level. Electrical conductivity of individual 140-nm-long DNA molecules was measured, showing insulating behavior in dry conditions. In contrast, clear enhancement of conductivity was observed in moist conditions, relating to the interplay between the conformation of DNA molecules and their conductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا