We find exact spherically symmetric solution of 4d nonlinear bosonic higher-spin gauge theory, that preserves a quarter of supersymmetries of N=2 supersymmetric 4d higher-spin gauge theory. In the weak field regime it describes $AdS_4$ Schwarzschild black hole in the spin two sector along with non-zero massless fields of all integer spins.
For the gauge massless higher spin 4D, N = 1 off-shell supermultiplets previously developed, we provide evidence of a twistor-like oscillator realization that is intrinsically related to the superfield structure of the dynamical variables and gauge transformations. Gauge invariant field strengths and linearized Bianchi identities for these multiplets are worked out. It is further argued, inspired by earlier non- supersymmetric constructions due to Klishevich and Zinoviev, that a massive superspin-$s$ multiplet can be described as a gauge-invariant dynamical system involving massless multiplets of superspins s, s-1/2, ..., 0. A gauge-invariant formulation for the massive gravitino multiplet is discussed in some detail.
We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires this kind of matter has an equation of state (omegaequiv p_r/rho=-1/(1+2kn), k,nin mathbb{N}), which seems to be independent of D. However, when we associate this with specific models, some interesting limits on space could be found: (i)(D=2+2kn) while the black hole is surrounded by cosmic strings; (ii)the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D=4 is special.
This is a continuation of our earlier work where we constructed a phenomenologically motivated effective action of the boundary gauge theory at finite temperature and finite gauge coupling on $S^3 times S^1$. In this paper, we argue that this effective action qualitatively reproduces the gauge theory representing various bulk phases of R-charged black hole with Gauss-Bonnet correction. We analyze the system both in canonical and grand canonical ensemble.
We study supersymmetric index of 4d $SU(N)$ $mathcal{N}=4$ super Yang-Mills theory on $S^1 times M_3$. We compute asymptotic behavior of the index in the limit of shrinking $S^1$ for arbitrary $N$ by a refinement of supersymmetric Cardy formula. The asymptotic behavior for the superconformal index case ($M_3 =S^3$) at large $N$ agrees with the Bekenstein-Hawking entropy of rotating electrically charged BPS black hole in $AdS_5$ via a Legendre transformation as recently shown in literature. We also find that the agreement formally persists for finite $N$ if we slightly modify the AdS/CFT dictionary between Newton constant and $N$. This implies an existence of non-renormalization property of the quantum black hole entropy. We also study the cases with other gauge groups and additional matters, and the orbifold $mathcal{N}=4$ super Yang-Mills theory. It turns out that the entropies of all the CFT examples in this paper are given by $2pi sqrt{Q_1 Q_2 +Q_1 Q_3 +Q_2 Q_3 -2c(J_1 +J_2 )} $ with charges $Q_{1,2,3}$, angular momenta $J_{1,2}$ and central charge $c$. The results for other $M_3$ make predictions to the gravity side.
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.