Do you want to publish a course? Click here

Dynamical Mean-Field Theory within an Augmented Plane-Wave Framework: Assessing Electronic Correlations in the Iron Pnictide LaFeAsO

133   0   0.0 ( 0 )
 Added by Markus Aichhorn
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an approach that combines the local density approximation (LDA) and the dynamical mean-field theory (DMFT) in the framework of the full-potential linear augmented plane waves (FLAPW) method. Wannier-like functions for the correlated shell are constructed by projecting local orbitals onto a set of Bloch eigenstates located within a certain energy window. The screened Coulomb interaction and Hunds coupling are calculated from a first-principle constrained RPA scheme. We apply this LDA+DMFT implementation, in conjunction with continuous-time quantum Monte-Carlo, to study the electronic correlations in LaFeAsO. Our findings support the physical picture of a metal with intermediate correlations. The average value of the mass renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with the picture inferred from photoemission experiments. The discrepancies between different LDA+DMFT calculations (all technically correct) which have been reported in the literature are shown to have two causes: i) the specific value of the interaction parameters used in these calculations and ii) the degree of localization of the Wannier orbitals chosen to represent the Fe 3d states, to which many-body terms are applied. The latter is a fundamental issue in the application of many-body calculations, such as DMFT, in a realistic setting. We provide strong evidence that the DMFT approximation is more accurate and more straightforward to implement when well-localized orbitals are constructed from a large energy window encompassing Fe-3d, As-4p and O-2p, and point out several difficulties associated with the use of extended Wannier functions associated with the low-energy iron bands. Some of these issues have important physical consequences, regarding in particular the sensitivity to the Hunds coupling.



rate research

Read More

101 - L. Degiorgi 2010
The Coulomb repulsion, impeding electrons motion, has an important impact on the charge dynamics. It mainly causes a reduction of the effective metallic Drude weight (proportional to the so-called optical kinetic energy), encountered in the optical conductivity, with respect to the expectation within the nearly-free electron limit (defining the so-called band kinetic energy), as evinced from band-structure theory. In principle, the ratio between the optical and band kinetic energy allows defining the degree of electronic correlations. Through spectral weight arguments based on the excitation spectrum, we provide an experimental tool, free from any theoretical or band-structure based assumptions, in order to estimate the degree of electronic correlations in several systems. We first address the novel iron-pnictide superconductors, which serve to set the stage for our approach. We then revisit a large variety of materials, ranging from superconductors, to Kondo-like systems as well as materials close to the Mott-insulating state. As comparison we also tackle materials, where the electron-phonon coupling dominates. We establish a direct relationship between the strength of interaction and the resulting reduction of the optical kinetic energy of the itinerant charge carriers.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
138 - C. Weber , A. Amaricci , M. Capone 2012
We present a new methodology to solve the Anderson impurity model, in the context of dynamical mean-field theory, based on the exact diagonalization method. We propose a strategy to effectively refine the exact diagonalization solver by combining a finite-temperature Lanczos algorithm with an adapted version of the cluster perturbation theory. We show that the augmented diagonalization yields an improved accuracy in the description of the spectral function of the single-band Hubbard model and is a reliable approach for a full d-orbital manifold calculation.
79 - Souvik Paul 2017
Using local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence band photoelectron spectra of highly popular multiferroic BiFeO$_{3}$. Within DMFT, the local impurity problem is tackled by exact diagonalization (ED) solver. For comparison, we also present result from LDA+U approach, which is commonly used to compute physical properties of this compound. Our LDA+DMFT derived spectra match adequately with the experimental hard X-ray photoelectron spectroscopy (HAXPES) and resonant photoelectron spectroscopy (RPES) for Fe 3$d$ states, whereas the other theoretical method that we employed failed to capture the features of the measured spectra. Thus, our investigation shows the importance of accurately incorporating the dynamical aspects of electron-electron interaction among the Fe 3$d$ orbitals in calculations to produce the experimental excitation spectra, which establishes BiFeO$_{3}$ as a strongly correlated electron system. The LDA+DMFT derived density of states (DOSs) exhibit significant amount of Fe 3$d$ states at the energy of Bi lone-pairs, implying that the latter is not as alone as previously thought in the spectral scenario. Our study also demonstrates that the combination of orbital cross-sections for the constituent elements and broadening schemes for the calculated spectral function are pivotal to explain the detailed structures of the experimental spectra.
The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as (N-th order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions. Such schemes are however either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT, which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the Projector Augmented Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely SrVO3 and beta-NiS (a charge-transfer material), including ligand states in the basis-set. The results are compared to calculations done with Maximally Localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا