Do you want to publish a course? Click here

The bosonic minimum output entropy conjecture and Lagrangian minimization

885   0   0.0 ( 0 )
 Added by Lorenzo Maccone
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new form for the bosonic channel minimal output entropy conjecture, namely that among states with equal input entropy, the thermal states are the ones that have slightest increase in entropy when sent through a infinitesimal thermalizing channel. We then detail a strategy to prove the conjecture through variational techniques. This would lead to the calculation of the classical capacity of a communication channel subject to thermal noise. Our strategy detects input thermal ensembles as possible solutions for the optimal encoding of the channel, lending support to the conjecture. However, it does not seem to be able to exclude the possibility that other input ensembles can attain the channel capacity.



rate research

Read More

We show that the minimum output entropy for all single-mode Gaussian channels is additive and is attained for Gaussian inputs. This allows the derivation of the channel capacity for a number of Gaussian channels, including that of the channel with linear loss, thermal noise, and linear amplification.
We consider sequences of random quantum channels defined using the Stinespring formula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states, we study the asymptotic eigenvalue distribution of the outputs through tensor powers of random channels. We show that the input states achieving minimum output entropy are tensor products of maximally entangled states (Bell states) when the tensor power is even. This phenomenon is completely different from the one for random quantum channels constructed from Haar-distributed random unitary matrices, which leads us to formulate some conjectures about the regularized minimum output entropy.
Optical channels, such as fibers or free-space links, are ubiquitous in todays telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. As a result, a complete physical model of these channels must necessarily take quantum effects into account in order to determine their ultimate performances. Specifically, Gaussian photonic (or bosonic) quantum channels have been extensively studied over the past decades given their importance for practical purposes. In spite of this, a longstanding conjecture on the optimality of Gaussian encodings has yet prevented finding their communication capacity. Here, this conjecture is solved by proving that the vacuum state achieves the minimum output entropy of a generic Gaussian bosonic channel. This establishes the ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical capacity of these channels is additive. Beyond capacities, it also has broad consequences in quantum information sciences.
209 - Thomas Kragh 2011
We prove that any closed connected exact Lagrangian manifold L in a connected cotangent bundle T*N is up to a finite covering space lift a homology equivalence. We prove this by constructing a fibrant parametrized family of ring spectra FL parametrized by the manifold N. The homology of FL will be (twisted) symplectic cohomology of T*L. The fibrancy property will imply that there is a Serre spectral sequence converging to the homology of FL and the product combined with intersection product on N induces a product on this spectral sequence. This product structure and its relation to the intersection product on L is then used to obtain the result. Combining this result with work of Abouzaid we arrive at the conclusion that L -> N is always a homotopy equivalence.
We prove that, for closed exact embedded Lagrangian submanifolds of cotangent bundles, the homomorphism of homotopy groups induced by the stable Lagrangian Gauss map vanishes. In particular, we prove that this map is null-homotopic for all spheres. The key tool that we introduce in order to prove this is the notion of twisted generating function and we show that every closed exact Lagrangian can be described using such an object, by extending a doubling argument developed in the setting of sheaf theory. Floer theory and sheaf theory constrain the type of twisted generating functions that can appear to a class which is closely related to Waldhausens tube space, and our main result follows by a theorem of Bokstedt which computes the rational homotopy type of the tube space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا