Do you want to publish a course? Click here

Searching for Single Production of Charged Heavy Leptons via Anomalous Interactions at CLIC

202   0   0.0 ( 0 )
 Added by A. Tolga Tasci
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We consider the possible discovery potential for single production of charged heavy leptons via anomalous interactions at the envisaged Compact Linear Collider (CLIC) by taking into account initial state radiation (ISR) and beamstrahlung effects. We calculate the production cross sections and decay widths of charged heavy leptons in the context of anomalous interactions at center of mass energies $sqrt{s}=1$ and 3 TeV. The signal and corresponding backgrounds are studied in detail for the mass range 300-1900 GeV.



rate research

Read More

We study the production of doubly charged excited leptons at the LHC. These exotic states are predicted in extended weak isospin composite models. A recent analysis of such exotic states was based on a pure gauge model with magnetic type interactions. We include here the mechanism of contact interactions and show that this turns out to dominate the production of the doubly charged leptons. We perform a feasibility analysis of the observation of the tri-lepton signature associated with the production of the exotic doubly charged lepton simulating the response of a generic detector. We give exclusion plots in the parameter space, within statistical uncertainties, at different luminosities.
We consider the production at the LHC of exotic composite leptons of charge Q=+2e. Such states are allowed in composite models which contain extended isospin multiplets (Iw=1 and Iw=3/2). These doubly charged leptons couple with Standard Model [SM] fermions via gauge interactions, thereby delineating and restricting their possible decay channels. We discuss the production cross section at the LHC of L++ (p p --> L++, l-) and concentrate on the leptonic signature deriving from the cascade decays L++ --> W+, l+ --> l+, l+, u_l i.e. p p --> l-, l+, l+, u_l showing that the invariant mass distribution of the like-sign dilepton has a sharp end point corresponding to excited lepton mass m*. We find that the sqrt{s}=7 TeV run is sensitive at the 3-sigma (5-sigma) level to a mass of the order of 600 GeV if L=10 fb^-1 (L=20 fb^-1). The sqrt{s}=14 TeV run can reach a sensitivity at 3-sigma (5-sigma) level up to m*=1 TeV for L=20 fb^-1 (L=60 fb^-1).
149 - F.M.L.Almeida Jr 2003
New heavy charged lepton production and decay signatures at future electron-positron colliders are investigated at $sqrt {s}=500$ GeV. The consequences of model dependence for vector singlets and vector doublets are studied. Distributions are calculated including hadronization effects and experimental cuts that suppress the standard model background. The final state leptonic energy distributions are shown to give a very clear signature for heavy charged leptons.
In a general two Higgs doublet model, we study flavor changing neutral Higgs (FCNH) decays into leptons at hadron colliders, $pp to phi^0 to tau^mpmu^pm +X$, where $phi^0$ could be a CP-even scalar ($h^0$, $H^0$) or a CP-odd pseudoscalar ($A^0$). The light Higgs boson $h^0$ is found to resemble closely the Standard Model Higgs boson at the Large Hadron Collider. In the alignment limit of $cos(beta-alpha) cong 0$ for $h^0$--$H^0$ mixing, FCNH couplings of $h^0$ are naturally suppressed, but such couplings of the heavier $H^0, A^0$ are sustained by $sin(beta-alpha) simeq 1$. We evaluate physics backgrounds from dominant processes with realistic acceptance cuts and tagging efficiencies. We find promising results for $sqrt{s} = 14$ TeV, which we extend further to $sqrt{s} = 27$ TeV and 100 TeV future pp colliders.
We analyze the potential of CLIC based on e- gamma collisions to search for new $Z$ gauge boson. Single Z production at e-gamma colliders in two SU(3)_C X SU(3)_L X U(1)_N models: the minimal model and the model with right-handed (RH) neutrinos is studied in detail. Results show that new Z gauge bosons can be observed at the CLIC, and the cross sections in the model with RH neutrinos are bigger than those in the minimal one.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا