Do you want to publish a course? Click here

Tests of Gravity from Imaging and Spectroscopic Surveys

361   0   0.0 ( 0 )
 Added by Jacek Guzik
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tests of gravity on large-scales in the universe can be made using both imaging and spectroscopic surveys. The former allow for measurements of weak lensing, galaxy clustering and cross-correlations such as the ISW effect. The latter probe galaxy dynamics through redshift space distortions. We use a set of basic observables, namely lensing power spectra, galaxy-lensing and galaxy-velocity cross-spectra in multiple redshift bins (including their covariances), to estimate the ability of upcoming surveys to test gravity theories. We use a two-parameter description of gravity that allows for the Poisson equation and the ratio of metric potentials to depart from general relativity. We find that the combination of imaging and spectroscopic observables is essential in making robust tests of gravity theories. The range of scales and redshifts best probed by upcoming surveys is discussed. We also compare our parametrization to others used in the literature, in particular the gamma parameter modification of the growth factor.



rate research

Read More

We analyze the ability of galaxy and CMB lensing surveys to constrain massive neutrinos and new models of dark radiation. We present a Fisher forecast analysis for neutrino mass constraints with the LSST galaxy survey and the CMB S4 survey. A joint analysis of the three galaxy and shear 2-point functions, along with key systematics parameters and Planck priors, constrains the neutrino masses to $sum m_ u = 0.041,$eV at 1-$sigma$ level, comparable to constraints expected from Stage 4 CMB lensing. If low redshift information from upcoming spectroscopic surveys like DESI is included, the constraint becomes $sum m_ u = 0.032,$eV. These constraints are derived having marginalized over the number of relativistic species ($N_{rm eff}$), which is somewhat degenerate with the neutrino mass. We also explore the gain by combining LSST and CMB S4, that is, using the five relevant auto- and cross-correlations of the two datasets. We conclude that advances in modeling the nonlinear regime and the measurements of other parameters are required to ensure a neutrino mass detection. Using the same datasets, we explore the ability of LSST-era surveys to test nonstandard models with dark radiation. We find that if evidence for dark radiation is found from $N_{rm eff}$ measurements, the mass of the dark radiation candidate can be measured at a 1-$sigma$ level of $0.162,$eV for fermionic dark radiation, and $0.137,$eV for bosonic dark radiation, for $Delta N_{rm eff} = 0.15$. We also find that the NNaturalness model of Arkani-Hamed et al 2016, with extra light degrees of freedom, has a sub-percent effect on the power spectrum: even more ambitious surveys than the ones considered here will be needed to test such models.
We develop a novel method to extract key cosmological information, which is primarily carried by the baryon acoustic oscillations (BAO) and redshift space distortions (RSD), from spectroscopic galaxy surveys, based on a joint principal component analysis (PCA) and Karhunen-Lo`eve (KL) data compression scheme. Comparing to the traditional methods using the multipoles or wedges of the galaxy correlation functions, we find that our method is able to extract the key information more efficiently, with a better control of the potential systematics, which manifests it as a powerful tool for clustering analysis for ongoing and forthcoming galaxy surveys.
118 - Anna Gallazzi 2009
The age and chemical composition of the stars in present-day galaxies carry important clues about their star formation processes. The latest generation of population synthesis models have allowed to derive age and stellar metallicity estimates for large samples of low-redshift galaxies. After reviewing the main results about the distribution in ages and metallicities as a function of galaxy mass, I will concentrate on recent analysis that aims at disentangling the dependences of stellar populations properties on environment and on galaxy stellar mass. Finally, new models that predict the response of the full spectrum to variations in [alpha/Fe] will allow us to derive accurate estimates of element abundance ratios and gain deeper insight into the timescales of star formation cessation.
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from ~kpc (galaxy scales) to ~Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the Integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages --- we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
83 - Benjamin Bose 2018
Modifications to gravity can provide attractive alternatives to the dark components of the standard model of cosmology. These modifications to general relativity (GR) must be hidden at small scales where theory is well tested, and so one naturally looks to the large scales in order to detect any deviations from GR. One particularly promising avenue in testing gravity at cosmological scales is within the anisotropy of galaxy clustering in redshift space. This thesis presents a framework for consistently constructing large scale structure observables in redshift space for gravitational theories that include an additional scalar degree of freedom, specifically, the Horndeski class of theories with a generalized potential term. The relevance of such a framework in the context of next generation spectroscopic surveys is then investigated using N-body simulations. The thesis concludes with ongoing and recently completed extensions to this framework, including interacting dark energy models and the effective field theory of large scale structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا