Do you want to publish a course? Click here

New Observations of the Very Luminous Supernova 2006gy: Evidence for Echoes

106   0   0.0 ( 0 )
 Added by Adam Miller
 Publication date 2009
  fields Physics
and research's language is English
 Authors A. A. Miller




Ask ChatGPT about the research

Supernova (SN) 2006gy was a hydrogen-rich core-collapse SN that remains one of the most luminous optical supernovae ever observed. The total energy budget (> 2 x 10^51 erg radiated in the optical alone) poses many challenges for standard SN theory. We present new ground-based near-infrared (NIR) observations of SN 2006gy, as well as a single epoch of Hubble Space Telescope (HST) imaging obtained more than two years after the explosion. Our NIR data taken around peak optical emission show an evolution that is largely consistent with a cooling blackbody, with tentative evidence for a growing NIR excess starting at day ~100. Our late-time Keck adaptive optics (AO) NIR image, taken on day 723, shows little change from previous NIR observations taken around day 400. Furthermore, the optical HST observations show a reduced decline rate after day 400, and the SN is bluer on day 810 than it was at peak. This late-time decline is inconsistent with Co56 decay, and thus is problematic for the various pair-instability SN models used to explain the nature of SN 2006gy. The slow decline of the NIR emission can be explained with a light echo, and we confirm that the late-time NIR excess is the result of a massive (>10 Msun) dusty shell heated by the SN peak luminosity. The late-time optical observations require the existence of a scattered light echo, which may be generated by the same dust that contributes to the NIR echo. Both the NIR and optical echoes originate in the proximity of the progenitor, ~10^18 cm for the NIR echo and <~10-40 pc for the optical echo, which provides further evidence that the progenitor of SN 2006gy was a very massive star.



rate research

Read More

We performed optical spectroscopy and photometry of SN 2006gy at late time, ~400 days after the explosion, with the Subaru/FOCAS in a good seeing condition. We found that the SN faded by ~3 mag from ~200 to ~400 days after the explosion (i.e., by ~5 mag from peak to ~400 days) in R band. The overall light curve is marginally consistent with the 56Ni heating model, although the flattening around 200 days suggests the optical flux declined more steeply between ~200 and ~400 days. The late time spectrum was quite peculiar among all types of SNe. It showed many intermediate width (~2000 km/s FWHM) emission lines, e.g., [Fe II], [Ca II], and Ca II. The absence of the broad [O I] 6300, 6364 line and weakness of [Fe II] and [Ca II] lines compared with Ca II IR triplet would be explained by a moderately high electron density in the line emitting region. This high density assumption seems to be consistent with the large amount of ejecta and low expansion velocity of SN 2006gy. The H-alpha line luminosity was as small as ~1x10^39 erg/s, being comparable with those of normal Type II SNe at similar epochs. Our observation indicates that the strong CSM interaction had almost finished by ~400 days. If the late time optical flux is purely powered by radioactive decay, at least M_Ni ~ 3 M_sun should be produced at the SN explosion. In the late phase spectrum, there were several unusual emission lines at 7400--8800 AA and some of them might be due to Ti or Ni synthesized at the explosion. (abridged)
We present new results from our search for z~7 galaxies from deep spectroscopic observations of candidate z-dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only 2 galaxies have robust redshift identifications, one from its Lyalpha emission line at z=6.65, the other from its Lyman-break, i.e. the continuum discontinuity at the Lyalpha wavelength consistent with a redshift 6.42, but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyalpha EW derived from the non detections in ultra-deep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z~7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Ly$alpha$ emission in z~7 Lyman break galaxies compared to z~6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.
134 - Paolo A. Mazzali 2013
SN2010ah, a very broad-lined type Ic SN discovered by the Palomar Transient Factory, was interesting because of its relatively high luminosity and the high velocity of the absorption lines, which was comparable to that of GRB/SNe, suggesting a high explosion kinetic energy. However, no GRB was detected in association with the SN. Here, the properties of SN2010ah are determined with higher accuracy than previous studies through modelling. New Subaru telescope photometry is presented. A bolometric light curve is constructed taking advantage of the spectral similarity with SN1998bw. Radiation transport tools are used to reproduce the spectra and the light curve. The results thus obtained regarding ejecta mass, composition and kinetic energy are then used to compute a synthetic light curve. This is in reasonable agreement with the early bolometric light curve of SN2010ah, but a high abundance of 56Ni at high velocity is required to reproduce the early rise, while a dense inner core must be used to reproduce the slow decline at late phases. The high-velocity 56Ni cannot have been located on our line of sight, which may be indirect evidence for an off-axis, aspherical explosion. The main properties of SN2010ah are: ejected mass ~ 3 Mo; kinetic energy ~10^52 erg, M(56Ni) ~ 0.25 Mo. The mass located at v >~ 0.1c is ~0.2 Mo. Although these values, in particular the kinetic energy, are quite large for a SN Ic, they are all smaller (especially the ejecta mass) than those typical of GRB/SNe. This confirms the tendency for these quantities to correlate, and suggests that there are minimum requirements for a GRB/SN, which SN2010ah may not meet although it comes quite close. Depending on whether a neutron star or a black hole was formed following core collapse, SN2010ah was the explosion of a CO core of ~ 5-6 Mo, pointing to a progenitor mass of ~24 - 28 Mo.
We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is $Delta m_{15}(B)=0.65pm 0.03$, which is one of the slowest among SNe Ia. The peak $V$-band absolute magnitude is $M_{V}=-19.90pm 0.15$ mag even if the host extinction is $A_{V}=0$ mag. It reaches $M_{V}=-20.19pm 0.19$ mag for the host extinction of $A_{V}=0.29$ mag as inferred from the observed Na {sc i} D line absorption in the host. Our $JHK_{s}$-band photometry shows that the SN is one of the most luminous SNe Ia also in near-infrared wavelengths. These results indicate that SN 2009dc belongs to the most luminous class of SNe Ia, like SN 2003fg and SN 2006gz. We estimate the ejected $^{56}$Ni mass of $1.2pm 0.3$ $Msun$ for no host extinction case (or 1.6$pm$ 0.4 M$_{odot}$ for the host extinction of $A_{V}=0.29$ mag). The C {sc ii} $lambda$6580 absorption line keeps visible until a week after maximum, which diminished in SN 2006gz before its maximum brightness. The line velocity of Si {sc ii} $lambda$6355 is about 8000 km s$^{-1}$ around the maximum, being considerably slower than that of SN 2006gz, while comparable to that of SN 2003fg. The velocity of the C {sc ii} line is almost comparable to that of the Si {sc ii}. The presence of the carbon line suggests that thick unburned C+O layers remain after the explosion. SN 2009dc is a plausible candidate of the super-Chandrasekhar mass SNe Ia.
iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around maximum light, consistent with massive ejecta if we assume a radioactive-powering scenario. We study the late-time light curve of iPTF15dtg, which turned out to be extraordinarily luminous for a stripped-envelope (SE) SN. We compare the observed light curves to those of other SE SNe and also with models for the $^{56}$Co decay. We analyze and compare the spectra to nebular spectra of other SE SNe. We build a bolometric light curve and fit it with different models, including powering by radioactivity, magnetar powering, as well as a combination of the two. Between 150 d and 750 d past explosion, iPTF15dtgs luminosity declined by merely two magnitudes instead of the six magnitudes expected from $^{56}$Co decay. This is the first spectroscopically-regular SE SN showing this behavior. The model with both radioactivity and magnetar powering provides the best fit to the light curve and appears to be the more realistic powering mechanism. An alternative mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very similar to those of other SE SNe, and do not show signs of strong CSM interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light curve displays such clear signs of a magnetar contributing to the powering of the late time light curve. Given this result, the mass of the ejecta needs to be revised to a lower value, and therefore the progenitor mass could be significantly lower than the previously estimated $>$35 $M_{odot}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا