Do you want to publish a course? Click here

Magnetically Torqued Neutrino-Dominated Accretion Flows for Gamma-ray Bursts

136   0   0.0 ( 0 )
 Added by Weihua Lei
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent observations and theoretical work on gamma-ray bursts (GRBs) favor the central engine model of a Kerr black hole (BH) surrounded by a magnetized neutrino-dominated accretion flow (NDAF). The magnetic coupling between the BH and disk through a large-scale closed magnetic field exerts a torque on the disk, and transports the rotational energy from the BH to the disk. We investigate the properties of the NDAF with this magnetic torque. For a rapid spinning BH, the magnetic torque transfers enormous rotational energy from BH into the inner disk. There are two consequences: (i) the luminosity of neutrino annihilation is greatly augmented; (ii) the disk becomes thermally and viscously unstable in the inner region, and behaves S-Shape of the surface density versus accretion rate. It turns out that magnetically torqued NDAF can be invoked to interpret the variability of gamma-ray luminosity. In addition, we discuss the possibility of restarting the central engine to produce the X-ray flares with required energy.



rate research

Read More

We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on September 14th, 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 second and appeared about 0.4 seconds after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnants matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.
As gamma-ray burst (GRB) jet drills its way through the collapsing star, it traps a baryonic cork ahead of it. Here we explore a prompt emission model for GRBs in which the jet does not cross the cork, but rather photons that are emitted deep in the flow largely by pair annihilation are scattered inside the expanding cork and escape largely from the back end of it as they push it from behind. Due to the relativistic motion of the cork, these photons are easily seen by an observer close to the jet axis peaking at $varepsilon_{peak}sim~few times 100 keV$. We show that this model naturally explains several key observational features including: (1) High energy power law index $beta_1 sim -2 {~rm to~} -5$ with an intermediate thermal spectral region; (2) decay of the prompt emission light curve as $sim t^{-2}$; (3) Delay of soft photons; (4) peak energy - isotropic energy (the so-called Amati) correlation, $varepsilon_{peak} sim varepsilon_{iso}^m$, with $msim 0.45$, resulting from different viewing angles. At low luminosities, our model predicts an observable turn off in the Amati relation. (4) An anti-correlation between the spectral full width half maxima (FWHM) and time as $t^{-1}$. (5) Temporal evolution $varepsilon_{peak} sim t^{-1}$, accompanied by an increase of the high energy spectral slope with time. (6) Distribution of peak energies $varepsilon_{peak}$ in the observed GRB population. The model is applicable for a single pulse GRB lightcurves and respective spectra. We discuss the consequence of our model in view of the current and future prompt emission observations.
We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $sim1%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.
205 - Y.B. Yu , X.F. Wu , Y.F. Huang 2013
Intense flares that occur at late times relative to the prompt phase have been observed by the $Swift$ satellite in the X-ray afterglows of gamma-ray bursts (GRBs). Here, we present a detailed analysis on the fall back accretion process to explain the intense flare phase in the very early X-ray afterglow light curves. To reproduce the afterglow at late times, we resort to the external shock by engaging energy injections. By applying our model to GRBs 080810, 081028 and 091029, we show that their X-ray afterglow light curves can be reproduced well. We then apply our model to the ultra-long $Swift$ GRB 111209A, which is the longest burst ever observed. The very early X-ray afterglow of GRB 111209A showed many interesting features, such as a significant bump observed at around 2000 s after the $Swift$/BAT trigger. We assume two constant energy injection processes in our model. These can explain the observed plateau at X-ray wavelength in the relatively early stage ($8.0times10^{3}$ s) and a second X-ray plateau and optical rebrightening at about $10^{5}$ s. Our analysis supports the scenario that a significant amount of material may fall back toward the central engine after the prompt phase, causing an enhanced and long lived mass accretion rate powering a Poynting-flux-dominated outflow.
89 - Yun-Feng Wei , Tong Liu , Li Xue 2021
Fallback in core-collapse supernovae (CCSNe) plays an important role in determining the properties of the central compact remnants, which might produce a black hole (BH) hyperaccretion system in the centre of a massive CCSN. When the accretion rate is extremely high and neutrino cooling is dominant, the hyperaccretion should be in the phase of the neutrino-dominated accretion flows (NDAFs), and thus a large number of anisotropic MeV neutrinos will be launched from the disc along with the strong gravitational waves (GWs). In this paper, we perform a series of one-dimensional CCSN simulations with the initial explosion energy in the range of $2-8$ B (1 B = $10^{51}$ erg) to investigate the fallback processes. By considering the evolution of the central BH mass and spin in the fallback accretion, we present the effects of the initial explosion energies, masses and metallicities of the massive progenitor stars on the spectra of anisotropic MeV neutrinos and the waveform of GWs from NDAFs. These neutrino or GW signals might be detected by operational or future detectors, and the multimessenger joint detections could constrain the properties of CCSNe and progenitor stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا