Do you want to publish a course? Click here

K$_2$Cr$_8$O$_{16}$ predicted as a half-metallic ferromagnet: Scenario for a metal-insulator transition

398   0   0.0 ( 0 )
 Added by Yukinori Ohta
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the first-principles electronic structure calculations, we predict that a chromium oxide K$_2$Cr$_8$O$_{16}$ of hollandite type should be a half-metallic ferromagnet where the Fermi level crosses only the majority-spin band, whereas the minority-spin band has a semiconducting gap. We show that the double-exchange mechanism is responsible for the observed saturated ferromagnetism. We discuss possible scenarios of the metal-insulator transition observed at low temperature and we argue that the formation of the incommensurate, long-wavelength density wave of spinless fermions caused by the Fermi-surface nesting may be the origin of the opening of the charge gap.



rate research

Read More

An textit{ab initio} electronic structure calculation based on the generalized gradient approximation in the density functional theory is carried out to study the basic electronic states of hollandite vanadate K$_2$V$_8$O$_{16}$. We find that the states near the Fermi energy consist predominantly of the three $t_{2g}$-orbital components and the hybridization with oxygen $2p$ orbitals is small. The $d_{yz}$ and $d_{zx}$ orbitals are exactly degenerate and are lifted from the $d_{xy}$ orbital. The calculated band dispersion and Fermi surface indicate that the system is not purely one-dimensional but the coupling between the VO double chains is important. Comparison with available experimental data suggests the importance of electron correlations in this system.
We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
We consider electronic properties of hollandite vanadate K$_2$V$_8$O$_{16}$, a one-dimensional zigzag-chain system of $t_{2g}$ orbitals in a mixed valent state. We first calculate the Madelung energy and obtain the relative stability of several charge-ordering patterns to determine the most stable one that is consistent with the observed superlattice structure. We then develop the strong-coupling perturbation theory to derive the effective spin-orbit Hamiltonian, starting from the triply-degenerate $t_{2g}$ orbitals in the VO$_6$ octahedral structure. We apply an exact-diagonalization technique on small clusters of this Hamiltonian and obtain the orbital-ordering pattern and spin structures in the ground state. We thereby discuss the electronic and magnetic properties of K$_2$V$_8$O$_{16}$ including predictions on the outcome of future experimental studies.
We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently continuously, near $P sim 6$,GPa. However, rather than $T_{MI}$ going to zero as expected, the insulating ground state crosses over to a metallic state with a negative temperature coefficient of resistivity, calling into question the true nature of both ground states. The high temperature state also crosses over near 6 GPa, from an incoherent to a conventional metal, suggesting a connection between the high and the low temperature states.
Metal-insulator transitions involve a mix of charge, spin, and structural degrees of freedom, and when strongly-correlated, can underlay the emergence of exotic quantum states. Mott insulators induced by the opening of a Coulomb gap are an important and well-recognized class of transitions, but insulators purely driven by spin correlations are much less common, as the reduced energy scale often invites competition from other degrees of freedom. Here we demonstrate a clean example of a spin-correlation-driven metal-insulator transition in the all-in-all-out pyrochlore antiferromagnet Cd2Os2O7, where the lattice symmetry is fully preserved by the antiferromagnetism. After the antisymmetric linear magnetoresistance from conductive, ferromagnetic domain walls is carefully removed experimentally, the Hall coefficient of the bulk reveals four Fermi surfaces, two of electron type and two of hole type, sequentially departing the Fermi level with decreasing temperature below the Neel temperature, T_N. Contrary to the common belief of concurrent magnetic and metal-insulator transitions in Cd2Os2O7, the charge gap of a continuous metal-insulator transition opens only at T~10K, well below T_N=227K. The insulating mechanism resolved by the Hall coefficient parallels the Slater picture, but without a folded Brillouin zone, and contrasts sharply with the behavior of Mott insulators and spin density waves, where the electronic gap opens above and at T_N, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا