Do you want to publish a course? Click here

Asymmetric statistics of order books: The role of discreteness and evidence for strategic order placement

169   0   0.0 ( 0 )
 Added by Matthieu Cristelli
 Publication date 2009
  fields Financial
and research's language is English




Ask ChatGPT about the research

We show that the statistics of spreads in real order books is characterized by an intrinsic asymmetry due to discreteness effects for even or odd values of the spread. An analysis of data from the NYSE order book points out that traders strategies contribute to this asymmetry. We also investigate this phenomenon in the framework of a microscopic model and, by introducing a non-uniform deposition mechanism for limit orders, we are able to quantitatively reproduce the asymmetry found in the experimental data. Simulations of our model also show a realistic dynamics with a sort of intermittent behavior characterized by long periods in which the order book is compact and liquid interrupted by volatile configurations. The order placement strategies produce a non-trivial behavior of the spread relaxation dynamics which is similar to the one observed in real markets.



rate research

Read More

We show that wealth processes in the block-shaped order book model of Obizhaeva/Wang converge to their counterparts in the reduced-form model proposed by Almgren/Chriss, as the resilience of the order book tends to infinity. As an application of this limit theorem, we explain how to reduce portfolio choice in highly-resilient Obizhaeva/Wang models to the corresponding problem in an Almgren/Chriss setup with small quadratic trading costs.
202 - Ioane Muni Toke 2013
We study the analytical properties of a one-side order book model in which the flows of limit and market orders are Poisson processes and the distribution of lifetimes of cancelled orders is exponential. Although simplistic, the model provides an analytical tractability that should not be overlooked. Using basic results for birth-and-death processes, we build an analytical formula for the shape (depth) of a continuous order book model which is both founded by market mechanisms and very close to empirically tested formulas. We relate this shape to the probability of execution of a limit order, highlighting a law of conservation of the flows of orders in an order book. We then extend our model by allowing random sizes of limit orders, hereby allowing to study the relationship between the size of the incoming limit orders and the shape of the order book. Our theoretical model shows that, for a given total volume of incoming limit orders, the less limit orders are submitted (i.e. the larger the average size of these limit orders), the deeper is the order book around the spread. This theoretical relationship is finally empirically tested on several stocks traded on the Paris stock exchange.
We investigate the statistical properties of the EBS order book for the EUR/USD and USD/JPY currency pairs and the impact of a ten-fold tick size reduction on its dynamics. A large fraction of limit orders are still placed right at or halfway between the old allowed prices. This generates price barriers where the best quotes lie for much of the time, which causes the emergence of distinct peaks in the average shape of the book at round distances. Furthermore, we argue that this clustering is mainly due to manual traders who remained set to the old price resolution. Automatic traders easily take price priority by submitting limit orders one tick ahead of clusters, as shown by the prominence of buy (sell) limit orders posted with rightmost digit one (nine).
We analyse high-frequency realised volatility dynamics and spillovers in the bitcoin market, focusing on two pairs: bitcoin against the US dollar (the main fiat-crypto pair) and trading bitcoin against tether (the main crypto-crypto pair). We find that the tether-margined perpetual contract on Binance is clearly the main source of volatility, continuously transmitting strong flows to all other instruments and receiving only a little volatility. Moreover, we find that (i) during US trading hours, traders pay more attention and are more reactive to prevailing market conditions when updating their expectations and (ii) the crypto market exhibits a higher interconnectedness when traditional Western stock markets are open. Our results highlight that regulators should not only consider spot exchanges offering bitcoin-fiat trading but also the tether-margined derivatives products available on most unregulated exchanges, most importantly Binance.
We introduce a Cox-type model for relative intensities of orders flows in a limit order book. The model assumes that all intensities share a common baseline intensity, which may for example represent the global market activity. Parameters can be estimated by quasi likelihood maximization, without any interference from the baseline intensity. Consistency and asymptotic behavior of the estimators are given in several frameworks, and model selection is discussed with information criteria and penalization. The model is well-suited for high-frequency financial data: fitted models using easily interpretable covariates show an excellent agreement with empirical data. Extensive investigation on tick data consequently helps identifying trading signals and important factors determining the limit order book dynamics. We also illustrate the potential use of the framework for out-of-sample predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا