No Arabic abstract
In this work, we propose the Bilayer Graphene Tunnel Field Effect Transistor (BG-TFET) as a device suitable for fabrication and circuit integration with present-day technology. It provides high Ion/Ioff ratio at ultra-low supply voltage, without the limitations in terms of prohibitive lithography and patterning requirements for circuit integration of graphene nanoribbons. Our investigation is based on the solution of the coupled Poisson and Schroedinger equations in three dimensions, within the Non-Equilibrium Green (NEGF) formalism on a Tight Binding Hamiltonian. We show that the small achievable gap of only few hundreds meV is still enough for promising TFET operation, providing a large Ion/Ioff ratio in excess of 10^3 even for a supply voltage of only 0.1 V. Key to this performance is the low quantum capacitance of bilayer graphene, which permits to obtain an extremely small sub-threshold swing S smaller than 20 mV/decade at room temperature.
We explore the device potential of tunable-gap bilayer graphene FET exploiting the possibility of opening a bandgap in bilayer graphene by applying a vertical electric field via independent gate operation. We evaluate device behavior using atomistic simulations based on the self-consistent solution of the Poisson and Schroedinger equations within the NEGF formalism. We show that the concept works, but bandgap opening is not strong enough to suppress band-to-band tunneling in order to obtain a sufficiently large Ion/Ioff ratio for CMOS device operation.
We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface.
In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 x 10$^4$ ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 {mu}V/dec)$^{-1}$ just above the threshold. The high ON-state current of 0.8 mA/{mu}m is enabled by a narrow (~ 0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band-tailing and trap-assisted tunneling.
Preparing graphene and its derivatives on functional substrates may open enormous opportunities for exploring the intrinsic electronic properties and new functionalities of graphene. However, efforts in replacing SiO$_{2}$ have been greatly hampered by a very low sample yield of the exfoliation and related transferring methods. Here, we report a new route in exploring new graphene physics and functionalities by transferring large-scale chemical vapor deposition single-layer and bilayer graphene to functional substrates. Using ferroelectric Pb(Zr$_{0.3}$Ti$_{0.7}$)O$_{3}$ (PZT), we demonstrate ultra-low voltage operation of graphene field effect transistors within $pm1$ V with maximum doping exceeding $10^{13},mathrm{cm^{-2}}$ and on-off ratios larger than 10 times. After polarizing PZT, switching of graphene field effect transistors are characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics.
We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferromagnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly-magnetized CoFeB allows sensitive detection of the exchange bias. It is found that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures. More importantly, the exchange bias can also be effectively manipulated by the electric field applied to the MgO barrier due to the voltage-controlled antiferromagnetic anisotropy in this system.