Do you want to publish a course? Click here

Calculation of fission observables through event-by-event simulation

110   0   0.0 ( 0 )
 Added by Jorgen Randrup
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.



rate research

Read More

111 - R. Vogt , J. Randrup , D. A. Brown 2011
Earlier studies of 239Pu(n, f) have been extended to incident neutron energies up to 20 MeV within the framework of the event-by-event fission model FREYA, into which we have incorporated multichance fission and pre-equilibrium neutron emission. The main parameters controlling prompt fission neutron evaporation have been identified and the prompt fission neutron spectrum has been analyzed by fitting those parameters to the average neutron multiplicity nubar from ENDF-B/VII.0, including the energy-energy correlations in nubar(E) obtained by fitting to the experimental nubar data used in the ENDF-B/VII.0 evaluation. We present our results, discuss relevant tests of this new evaluation, and describe possible further improvements.
In a noncentral heavy-ion collision, the two colliding nuclei have finite angular momentum in the direction perpendicular to the reaction plane. After the collision, a fraction of the total angular momentum is retained in the produced hot quark-gluon matter and is manifested in the form of fluid shear. Such fluid shear creates finite flow vorticity. We study some features of such generated vorticity, including its strength, beam energy dependence, centrality dependence, and spatial distribution.
64 - S. Haussler 2007
Within a dynamical quark recombination model we explore various proposed event-by-event observables sensitive to the microscopic structure of the QCD-matter created at RHIC energies. Charge fluctuations, charge transfer fluctuations and baryon-strangeness correlations are computed from a sample of central Au+Au events at the highest RHIC energy available ($sqrt{s_{NN}}$=200 GeV). We find that for all explored observables, the calculations yield the values predicted for a quark-gluon plasma only at early times of the evolution, whereas the final state approaches the values expected for a hadronic gas. We argue that the recombination-like hadronization process itself is responsible for the disappearance of the predicted deconfinement signatures. This might explain why no fluctuation signatures for the transition between quark and hadronic matter was ever observed in the experimental data up to now. However, it might also be interpreted as a clear indication for a recombination like hadronization process at RHIC.
121 - R. Vogt , J. Randrup , J. Pruet 2009
Employing a recently developed Monte Carlo model, we study the fission of 240Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies up to 2 MeV.
Event-by-event viscous hydrodynamics is combined with heavy quark energy loss models to compute heavy flavor flow cumulants $v_2{2}$, $v_3{2}$, and $v_2{4}$ as well as the nuclear modification factors of $D^0$ and $B^0$ mesons in PbPb collisions at 2.76 TeV. Our results indicate that bottom quarks can flow as much as charm quarks in the $p_T$ range 8--30 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا