Do you want to publish a course? Click here

Improved measurements of the temperature and polarization of the CMB from QUaD

131   0   0.0 ( 0 )
 Added by Michael L. Brown
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an improved analysis of the final dataset from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our CMB power spectrum measurements by ~30% versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests and by way of the agreement we find between our two fully independent analysis pipelines. For the standard 6-parameter LCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the ACBAR experiment, the uncertainty in the spectral index running is reduced by ~25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to < 1.5 x 10^{-43} GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between l = 200 and l = 2000, we constrain the amplitude of B-modes to be < 0.57 micro-K^2 (95% c.l.).



rate research

Read More

We evaluate the contribution of cosmic microwave background (CMB) polarization spectra to cosmological parameter constraints. We produce cosmological parameters using high-quality CMB polarization data from the ground-based QUaD experiment and demonstrate for the majority of parameters that there is significant improvement on the constraints obtained from satellite CMB polarization data. We split a multi-experiment CMB dataset into temperature and polarization subsets and show that the best-fit confidence regions for the LCDM 6-parameter cosmological model are consistent with each other, and that polarization data reduces the confidence regions on all parameters. We provide the best limits on parameters from QUaD EE/BB polarization data and we find best-fit parameters from the multi-experiment CMB dataset using the optimal pivot scale of k_p=0.013 Mpc-1 to be {omch2, ombh2, H_0, A_s, n_s, tau}= {0.113, 0.0224, 70.6, 2.29 times 10^-9, 0.960, 0.086}.
In this paper we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard 6-parameter LCDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard 6-parameter LCDM analysis we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data shows some tension with LCDM. The origin of this 1 to 2 sigma tension remains unclear, and may point to new physics, residual systematics or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS Luminous Red Galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, alpha(cdmi)<0.11 (95 % CL), neutrino density, alpha(ndi)<0.26 (95 % CL), and neutrino velocity, alpha(nvi)<0.23 (95 % CL), modes. Our analysis sets a benchmark for future polarization experiments.
QUaD is a bolometric CMB polarimeter sited at the South Pole, operating at frequencies of 100 and 150 GHz. In this paper we report preliminary results from the first season of operation (austral winter 2005). All six CMB power spectra are presented derived as cross spectra between the 100 and 150 GHz maps using 67 days of observation in a low foreground region of approximately 60 square degrees. This data is a small fraction of the data acquired to date. The measured spectra are consistent with the LCDM cosmological model. We perform jackknife tests which indicate that the observed signal has negligible contamination from instrumental systematics. In addition by using a frequency jackknife we find no evidence for foreground contamination.
We present measurements of the $E$-mode polarization angular auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range $50 < ell leq 8000$, and detect nine acoustic peaks in the $EE$ spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the $EE$ and $TE$ power spectra at $ell > 1050$ and $ell > 1475$, respectively. The observations cover 500 deg$^2$, a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on LCDM model extensions. After masking all sources with unpolarized flux $>50$ mJy we place a 95% confidence upper limit on residual polarized point-source power of $D_ell = ell(ell+1)C_ell/2pi <0.107,mu{rm K}^2$ at $ell=3000$, suggesting that the $EE$ damping tail dominates foregrounds to at least $ell = 4050$ with modest source masking. We find that the SPTpol dataset is in mild tension with the $Lambda CDM$ model ($2.1,sigma$), and different data splits prefer parameter values that differ at the $sim 1,sigma$ level. When fitting SPTpol data at $ell < 1000$ we find cosmological parameter constraints consistent with those for $Planck$ temperature. Including SPTpol data at $ell > 1000$ results in a preference for a higher value of the expansion rate ($H_0 = 71.3 pm 2.1,mbox{km},s^{-1}mbox{Mpc}^{-1}$ ) and a lower value for present-day density fluctuations ($sigma_8 = 0.77 pm 0.02$).
We present measurements of the $E$-mode ($EE$) polarization power spectrum and temperature-$E$-mode ($TE$) cross-power spectrum of the cosmic microwave background using data collected by SPT-3G, the latest instrument installed on the South Pole Telescope. This analysis uses observations of a 1500 deg$^2$ region at 95, 150, and 220 GHz taken over a four month period in 2018. We report binned values of the $EE$ and $TE$ power spectra over the angular multipole range $300 le ell < 3000$, using the multifrequency data to construct six semi-independent estimates of each power spectrum and their minimum-variance combination. These measurements improve upon the previous results of SPTpol across the multipole ranges $300 le ell le 1400$ for $EE$ and $300 le ell le 1700$ for $TE$, resulting in constraints on cosmological parameters comparable to those from other current leading ground-based experiments. We find that the SPT-3G dataset is well-fit by a $Lambda$CDM cosmological model with parameter constraints consistent with those from Planck and SPTpol data. From SPT-3G data alone, we find $H_0 = 68.8 pm 1.5 mathrm{km,s^{-1},Mpc^{-1}}$ and $sigma_8 = 0.789 pm 0.016$, with a gravitational lensing amplitude consistent with the $Lambda$CDM prediction ($A_L = 0.98 pm 0.12$). We combine the SPT-3G and the Planck datasets and obtain joint constraints on the $Lambda$CDM model. The volume of the 68% confidence region in six-dimensional $Lambda$CDM parameter space is reduced by a factor of 1.5 compared to Planck-only constraints, with only slight shifts in central values. We note that the results presented here are obtained from data collected during just half of a typical observing season with only part of the focal plane operable, and that the active detector count has since nearly doubled for observations made with SPT-3G after 2018.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا