Do you want to publish a course? Click here

An overview of the current status of CMB observations

224   0   0.0 ( 0 )
 Added by Rita Belen Barreiro
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.



rate research

Read More

The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among many of the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fields in these objects. At the time of writing, MiMeS Large Programs have acquired over 950 high-resolution polarised spectra of about 150 individual stars with spectral types from B5-O4, discovering new magnetic fields in a dozen hot, massive stars. The quality of this spectral and magnetic materiel is very high, and the Collaboration is keen to connect with colleagues capable of exploiting the data in new or unforeseen ways. In this paper we review the structure of the MiMeS observing programs and report the status of observations, data modeling and development of related theory.
MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.
147 - Joe Silk 2012
Understanding galaxy formation is one of the most pressing issues in cosmology. We review the current status of galaxy formation from both an observational and a theoretical perspective, and summarise the prospects for future advances.
The first generation of gravitational wave interferometric detectors has taken data at, or close to, their design sensitivity. This data has been searched for a broad range of gravitational wave signatures. An overview of gravitational wave search methods and results are presented. Searches for gravitational waves from unmodelled burst sources, compact binary coalescences, continuous wave sources and stochastic backgrounds are discussed.
Departures of the energy spectrum of the cosmic microwave background (CMB) from a perfect blackbody probe a fundamental property of the universe -- its thermal history. Current upper limits, dating back some 25 years, limit such spectral distortions to 50 parts per million and provide a foundation for the Hot Big Bang model of the early universe. Modern upgrades to the 1980s-era technology behind these limits enable three orders of magnitude or greater improvement in sensitivity. The standard cosmological model provides compelling targets at this sensitivity, spanning cosmic history from the decay of primordial density perturbations to the role of baryonic feedback in structure formation. Fully utilizing this sensitivity requires concurrent improvements in our understanding of competing astrophysical foregrounds. We outline a program using proven technologies capable of detecting the minimal predicted distortions even for worst-case foreground scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا