Do you want to publish a course? Click here

The dynamical role of the circumplanetary disc in planetary migration

122   0   0.0 ( 0 )
 Added by Aur\\'elien Crida
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numerical simulations of planets embedded in protoplanetary gaseous discs are a precious tool for studying the planetary migration ; however, some approximations have to be made. Most often, the selfgravity of the gas is neglected. In that case, it is not clear in the literature how the material inside the Roche lobe of the planet should be taken into account. Here, we want to address this issue by studying the influence of various methods so far used by different authors on the migration rate. We performed high-resolution numerical simulations of giant planets embedded in discs. We compared the migration rates with and without gas selfgravity, testing various ways of taking the circum-planetary disc (CPD) into account. Different methods lead to significantly different migration rates. Adding the mass of the CPD to the perturbing mass of the planet accelerates the migration. Excluding a part of the Hill sphere is a very touchy parameter that may lead to an artificial suppression of the type III, runaway migration. In fact, the CPD is smaller than the Hill sphere. We recommend excluding no more than a 0.6 Hill radius and using a smooth filter. Alternatively, the CPD can be given the acceleration felt by the planet from the rest of the protoplanetary disc. The gas inside the Roche lobe of the planet should be very carefully taken into account in numerical simulations without any selfgravity of the gas. The entire Hill sphere should not be excluded. The method used should be explicitly given. However, no method is equivalent to computing the full selfgravity of the gas.



rate research

Read More

The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.
57 - J.C.B. Papaloizou 2021
Studies of planet migration derived from disc planet interactions began before the discovery of exoplanets. The potential importance of migration for determining orbital architectures being realised, the field received greater attention soon after the initial discoveries of exoplanets. Early studies based on very simple disc models indicated very fast migration times for low mass planets that raised questions about its relevance. However, more recent studies, made possible with improving resources, that considered improved physics and disc models revealed processes that could halt or reverse this migration. That in turn led to a focus on special regions in the disc where migration could be halted. In this way the migration of low mass planets could be reconciled with formation theories. In the case of giant planets which have a nonlinear interaction with the disc, the migration should be slower and coupled to the evolution of the disc. The latter needs to be considered more fully to make future progress in all cases. Here we are primarily concerned with processes where migration is connected with the presence of the protopolanetary disk. Migration may also be induced by disc-free gravitational interactions amongst planets or with binary companions. This is only briefly discussed here.
We investigated the formation and evolution of satellite systems in a cold, extended circumplanetary disc around a 10 $M_{rm{Jupiter}}$ gas giant which was formed by gravitational instability at 50,AU from its star. The disc parameters were from a 3D global SPH simulation. We used a population synthesis approach, where we placed satellite embryos in this disc, and let them accrete mass, migrate, collide until the gaseous disc is dissipated. In each run we changed the initial dust-to-gas ratio, dispersion- and refilling time-scales within reasonable limits, as well as the number of embryos and their starting locations. We found that most satellites have mass similar to the Galilean ones, but very few can reach a maximum of 3 $M_{rm{Earth}}$ due to the massive circumplanetary disc. Large moons are often form as far as 0.5 $R_{rm{disc}}$. The migration rate of satellites are fast, hence during the disc lifetime, an average of 10 $M_{rm{Earth}}$ worth of moons will be engulfed by the planet, increasing greatly its metallicity. We also investigated the effect of the planets semi-major axis on the resulting satellite systems by re-scaling our model. This test revealed that for the discs closer to the star, the formed moons are lighter, and a larger amount of satellites are lost into the planet due to the even faster migration. Finally, we checked the probability of detecting satellites like our population, which resulted in a low number of $leq$ 3% even with upcoming powerful telescopes like E-ELT.
153 - Richard P. Nelson 2018
The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary disks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields.
Transition discs are expected to be a natural outcome of the interplay between photoevaporation (PE) and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of disc dispersal due to PE through a process known as Planet-Induced PhotoEvaporation (PIPE). In this case, a cavity is formed as material inside the planetary orbit is removed by PE, leaving only the outer disc to drive the migration of the giant planet. We investigate the impact of PE on giant planet migration and focus specifically on the case of transition discs with an evacuated cavity inside the planet location. This is important for determining under what circumstances PE is efficient at halting the migration of giant planets, thus affecting the final orbital distribution of a population of planets. For this purpose, we use 2D FARGO simulations to model the migration of giant planets in a range of primordial and transition discs subject to PE. The results are then compared to the standard prescriptions used to calculate the migration tracks of planets in 1D planet population synthesis models. The FARGO simulations show that once the disc inside the planet location is depleted of gas, planet migration ceases. This contradicts the results obtained by the impulse approximation, which predicts the accelerated inward migration of planets in discs that have been cleared inside the planetary orbit. These results suggest that the impulse approximation may not be suitable for planets embedded in transition discs. A better approximation that could be used in 1D models would involve halting planet migration once the material inside the planetary orbit is depleted of gas and the surface density at the 3:2 mean motion resonance location in the outer disc reaches a threshold value of $0.01,mathrm{g,cm^{-2}}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا