Competition between fusion-fission and quasifission processes in the $^{32}$S+$^{182,184}$W reactions


Abstract in English

The angular distributions of fission fragments for the $^{32}$S+$^{184}$W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1 and 144.4 MeV were measured. The experimental fission excitation function is obtained. The fragment angular anisotropy ($mathcal{A}_{rm exp}$) is found by extrapolating the each fission angular distributions. The measured fission cross sections of the $^{32}$S+$^{182,184}$W reaction are decomposed into fusion-fission, quasifission and fast fission contributions by the dinuclear system model. The total evaporation residue excitation function for the $^{32}$S+$^{184}$W reaction calculated in the framework of the advanced statistical model is in good agreement with the available experimental data up to about $E_{rm c.m.}approx 160$ MeV. The theoretical descriptions of the experimental capture excitation functions for both reactions and quantities $K_0^2$, $<ell^2>$ and $mathcal{A}_{rm exp}$ which characterize angular distributions of the fission products were performed by the same partial capture cross sections at the considered range of beam energy.

Download