Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks in models with baryonic violation of R-parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
The $R$-parity violating decays of Bino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved using the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson masses and the Higgs mass. The explicit RPV decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The analysis of these quantities breaks into two separate calculations; first, for Bino neutralino LSPs with mass larger than $M_{W^{pm}}$ and, second, when the Bino neutralino mass is smaller than the electroweak scale. The RPV decay processes in both of these regions is analyzed in detail. The decay lengths of these RPV interactions are discussed. It is shown that for heavy Bino neutralino LSPs the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced decays of various lengths. The situation is reversed for light Bino LSPs, only a small number of which can RPV decay promptly. The relation of these results to the neutrino hierarchy--either normal or inverted--is discussed in detail.
The $R$-parity violating decays of both Wino chargino and Wino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved using the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson and Higgs masses. The explicit decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The decay lengths of these RPV interactions are discussed. It is shown that the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced vertices of various lengths. It is demonstrated that for a Wino chargino LSP, the NLSP is the Wino neutralino with a mass only slightly higher than the LSP-- and vice-versa. As a consequence, we show that both the Wino chargino and Wino neutralino LSP/NLSP $R$-parity violating decays should be simultaneously observable at the CERN LHC.
Quark flavour conserving (QFC) fermionic squark decays, such as ~t_{1,2} -> t neutralino_i, are usually assumed in squark search analyses. Here we study quark flavour violating (QFV) bosonic squark decays, such as ~u_2 -> ~u_1 h^0/Z^0, where the mass eigenstates ~u_{1,2} are mixtures of scharm and stop quarks. We show that the branching ratios of such QFV decays can be very large due to sizable ~c_R - ~t_{R/L} and ~t_R - ~t_L mixing effects despite the very strong constraints on the QFV parameters from B meson data. This can result in remarkable QFV signatures with significant rates at LHC (14 TeV), such as pp -> gluino gluino X -> t c bar{c} bar{c} h^0/Z^0 missing-E_T X and pp -> gluino gluino X -> t t bar{c} bar{c} h^0/Z^0 missing-E_T X. The QFV bosonic squark decays can play an important role in the squark and gluino searches at LHC (14 TeV).
We consider effects of $n-bar n$ oscillations and resultant matter instability due to dinucleons decays. We point out that existing upper bounds on the rates for the dinucleon decays $nn to 2pi^0$, $nn to pi^+pi^-$, and $np to pi^+pi^0$ imply upper bounds on the rates for dinucleon decays to dileptons $nn to e^+ e^-$, $nn to mu^+mu^-$, $nn to u_ell bar u_ell$, and $np to ell^+ u_ell$, where $ell=e, mu, tau$. We present estimates for these upper bounds. Our bounds are substantially stronger than corresponding limits from direct searches.
We search for lepton-number- and baryon-number-violating decays $tau^{-}tooverline{p}e^{+}e^{-}$, $pe^{-}e^{-}$, $overline{p}e^{+}mu^{-}$, $overline{p}e^{-}mu^{+}$, $overline{p}mu^{+}mu^{-}$, and $pmu^{-}mu^{-}$ using 921 fb$^{-1}$ of data, equivalent to $(841pm12)times 10^6$ $tau^{+}tau^{-}$ events, recorded with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. In the absence of a signal, $90%$ confidence-level upper limits are set on the branching fractions of these decays in the range $(1.8$-$4.0)times 10^{-8}$. We set the worlds first limits on the first four channels and improve the existing limits by an order of magnitude for the last two channels.