Do you want to publish a course? Click here

First detection of acceleration and deceleration in protostellar jets? Time variability in the Cha II outflows

212   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a multi-epoch (20 years baseline) kinematical investigation of HH52, 53, and 54 at optical and near-IR wavelengths, along with medium and high- resolution spectroscopic analyses, probing the kinematical and physical time variability conditions of the gas along the flows. By means of multi-epoch and multi-wavelength narrow-band images, we derived proper motions, tangential velocities, velocity and flux variability of the knots. Radial velocities and physical parameters of the gas were derived from spectroscopy. Finally, spatial velocities and inclination of the flows were obtained by combining both imaging and spectroscopy. The P.M. analysis reveals three distinct, partially overlapping outflows. In 20 years, about 60% of the knots show some degree of flux variability. Our set of observations apparently indicates acceleration and deceleration in a variety of knots along the jets. For about 20% of the knots, mostly coincident with working surfaces or interacting knots along the flows, a relevant variability in both flux and velocity is observed. We argue that both variabilities are related and that all or part of the kinetic energy lost by the interacting knots is successively radiated. The analysis indicates the presence of very light, ionised, and hot flows, impacting a denser medium. Several knots are deflected. At least for a couple of them (HH54 G and G0), the deflection originates from the collision of the two. For the more massive parts of the flow, the deflection is likely the result of the flow collision with a dense cloud or with clumps.



rate research

Read More

Understanding the collapse of clouds and the formation of protoplanetary disks is essential to understanding the formation of stars and planets. Infall and accretion, the mass-aggregation processes that occur at envelope and disk scales, drive the dynamical evolution of protostars. While the observations of protostars at different stages constrain their evolutionary tracks, the impact of variability due to accretion bursts on dynamical and chemical evolution of the source is largely unknown. The lasting effects on protostellar envelopes and disks are tracked through multi-wavelength and time domain observational campaigns, requiring deep X-ray, infrared, and radio imaging and spectroscopy, at a sufficient level of spatial detail to distinguish contributions from the various substructures (i.e., envelope from disk from star from outflow). Protostellar models derived from these campaigns will illuminate the initial chemical state of protoplanetary disks during the epoch of giant planet formation. Insight from individual star formation in the Milky Way is also necessary to understand star formation rates in extragalactic sources. This cannot be achieved with ground-based observatories and is not covered by currently approved instrumentation. Requirements: High (v < 10 km/s for survey; v < 1 km/s for followup) spectral resolution capabilities with relatively rapid response times in the IR (3-500 um), X-ray (0.1-10 keV), and radio (cm) are critical to follow the course of accretion and outflow during an outburst. Complementary, AU-scale radio observations are needed to probe the disk accretion zone, and 10 AU-scale to probe chemical and kinematic structures of the disk-forming regions, and track changes in the dust, ice, and gas within protostellar envelopes.
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.
88 - Luis A. Zapata 2017
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al. (2009), and using $^{12}$CO(J=2-1) archival data from the Submillimeter Array (SMA), we contrast two well known explosive objects, Orion KL and DR21, to HH211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment there are only two well established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. Main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the red with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position i.e. the place where its exciting source was located, contrary to the bulk of the molecular material within the protostellar outflows.
The goal of the Protostellar Outflows at the EarliesT Stages (POETS) survey is to image the disk-outflow interface on scales of 10-100 au in a statistically significant sample (36) of luminous young stellar objects (YSO), targeting both the molecular and ionized components of the outflows. The outflow kinematics is studied at milliarcsecond scales through VLBI observations of the 22 GHz water masers. We employed the JVLA at 6, 13, and 22 GHz in the A- and B-Array configurations to determine the spatial structure and the spectral index of the radio continuum emission. In about half of the targets, the water masers observed at separation <= 1000 au from the YSOs trace either or both of these kinematic structures: 1) a spatially elongated distribution oriented at close angle with the direction of collimation of the maser proper motions (PM), and 2) a linear LSR velocity (Vlsr) gradient across the YSO position. The kinematic structure (1) is readily interpreted in terms of a protostellar jet, as confirmed in some targets via the comparison with independent observations of the YSO jets, in thermal (continuum and line) emissions, reported in the literature. The kinematic structure (2) is interpreted in terms of a disk-wind (DW) seen almost edge-on on the basis of several pieces of evidence: first, it is invariably directed perpendicular to the YSO jet; second, it agrees in orientation and polarity with the Vlsr gradient in thermal emissions (when reported in the literature) identifying the YSO disk at scales of <= 1000~au; third, the PMs of the masers delineating the Vlsr gradients hint at flow motions at a speed of 10-20 km/s directed at large angles with the disk midplane. In the remaining targets, the maser PMs are not collimated but rather tend to align along two almost perpendicular directions, and could originate in DW-jet systems slightly inclined (<= 30 deg) with respect to edge-on.
107 - Eduard Vorobyov 2018
We aim at studying the causal link between the knotty jet structure in CARMA 7, a young Class 0 protostar in the Serpens South cluster, and episodic accretion in young protostellar disks. We used numerical hydrodynamics simulations to derive the protostellar accretion history in gravitationally unstable disks around solar-mass protostars. We compared the time spacing between luminosity bursts Deltatau_mod, caused by dense clumps spiralling on the protostar, with the differences of dynamical timescales between the knots Deltatau_obs in CARMA 7. We found that the time spacing between the bursts have a bi-modal distribution caused by isolated and clustered luminosity bursts. The former are characterized by long quiescent periods between the bursts with Deltatau_mod = a few * (10^3-10^4) yr, whereas the latter occur in small groups with time spacing between the bursts Deltatau_mod= a few * (10-10^2) yr. For the clustered bursts, the distribution of Deltatau_mod in our models can be fit reasonably well to the distribution of Deltatau_obs in the protostellar jet of CARMA 7, if a certain correction for the (yet unknown) inclination angle with respect to the line of sight is applied. The K-S test on the model and observational data sets suggests the best-fit values for the inclination angles of 55-80 deg., which become narrower (75-80 deg.) if only strong luminosity bursts are considered. The dynamical timescales of the knots in the jet of CARMA 7 are too short for a meaningful comparison with the long time spacings between isolated bursts in our models. The exact sequences of time spacings between the luminosity bursts in our models and knots in the jet of CARMA 7 were found difficult to match. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا