No Arabic abstract
Cilia and flagella are hair-like extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
We calculate the hydrodynamic flow field generated far from a cilium which is attached to a surface and beats periodically. In the case of two beating cilia, hydrodynamic interactions can lead to synchronization of the cilia, which are nonlinear oscillators. We present a state diagram where synchronized states occur as a function of distance of cilia and the relative orientation of their beat. Synchronized states occur with different relative phases. In addition, asynchronous solutions exist. Our work could be relevant for the synchronized motion of cilia generating hydrodynamic flows on the surface of cells.
We present a theory of chemokinetic search agents that regulate directional fluctuations according to distance from a target. A dynamic scattering effect reduces the probability to penetrate regions with high fluctuations and thus search success for agents that respond instantaneously to positional cues. In contrast, agents with internal states that initially suppress chemokinesis can exploit scattering to increase their probability to find the target. Using matched asymptotics between the case of diffusive and ballistic search, we obtain analytic results beyond Fox colored noise approximation.
Carpets of actively bending cilia can exhibit self-organized metachronal coordination. Past research proposed synchronization by hydrodynamic coupling, but if such coupling is strong enough to overcome active phase noise had been addressed only for pairs of cilia. Using a multi-scale model calibrated by experimental cilia beat patterns, we find local multi-stability of wave modes. Yet, a single mode, corresponding to a dexioplectic wave, has predominant basin-of-attraction. Beyond a characteristic noise strength, we observe an abrupt loss of global synchronization even in finite systems.
Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella which results in a decrease in their propulsive force.
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and TADs (topologically-associating domains), to contact domains stabilized by cohesin and CTCF. However, molecular mechanisms underlying this folding, and the way folding affects transcriptional activity, remain obscure. Here we review physical principles driving proteins bound to long polymers into clusters surrounded by loops, and present a parsimonious yet comprehensive model for the way the organization determines function. We argue that clusters of active RNA polymerases and their transcription factors are major architectural features; then, contact domains, TADs, and compartments just reflect one or more loops and clusters. We suggest tethering a gene close to a cluster containing appropriate factors -- a transcription factory -- increases the firing frequency, and offer solutions to many current puzzles concerning the actions of enhancers, super-enhancers, boundaries, and eQTLs (expression quantitative trait loci). As a result, the activity of any gene is directly influenced by the activity of other transcription units around it in 3D space, and this is supported by Brownian-dynamics simulations of transcription factors binding to cognate sites on long polymers.