Do you want to publish a course? Click here

Dispersive estimates using scattering theory for matrix Hamiltonian equations

244   0   0.0 ( 0 )
 Added by Jeremy Marzuola
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop the techniques of cite{KS1} and cite{ES1} in order to derive dispersive estimates for a matrix Hamiltonian equation defined by linearizing about a minimal mass soliton solution of a saturated, focussing nonlinear Schrodinger equation {c} i u_t + Delta u + beta (|u|^2) u = 0 u(0,x) = u_0 (x), in $reals^3$. These results have been seen before, though we present a new approach using scattering theory techniques. In further works, we will numerically and analytically study the existence of a minimal mass soliton, as well as the spectral assumptions made in the analysis presented here.



rate research

Read More

364 - Remi Carles 2008
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodinger equation with power-like nonlinearity or with Hartree type nonlinearity, and in the case of the wave and Klein-Gordon equations with power nonlinearity. Finally, we discuss the link of this approach with inverse scattering, and with complete integrability.
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspace of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.
We show that for a one-dimensional Schrodinger operator with a potential whose first moment is integrable the scattering matrix is in the unital Wiener algebra of functions with integrable Fourier transforms. Then we use this to derive dispersion estimates for solutions of the associated Schrodinger and Klein-Gordon equations. In particular, we remove the additional decay conditions in the case where a resonance is present at the edge of the continuous spectrum.
We show that for a Jacobi operator with coefficients whose (j+1)th moments are summable the jth derivative of the scattering matrix is in the Wiener algebra of functions with summable Fourier coefficients. We use this result to improve the known dispersive estimates with integrable time decay for the time dependent Jacobi equation in the resonant case.
We prove sharp pointwise decay estimates for critical Dirac equations on $mathbb{R}^n$ with $ngeq 2$. They appear for instance in the study of critical Dirac equations on compact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb structures. For the latter case, we find excited states with an explicit asymptotic behavior. Moreover, we provide some classification results both for ground states and for excited states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا