Do you want to publish a course? Click here

Banach-Stone Theorems for maps preserving common zeros

122   0   0.0 ( 0 )
 Added by Denny H. Leung
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ and $Y$ be completely regular spaces and $E$ and $F$ be Hausdorff topological vector spaces. We call a linear map $T$ from a subspace of $C(X,E)$ into $C(Y,F)$ a emph{Banach-Stone map} if it has the form $Tf(y) = S_{y}(f(h(y))$ for a family of linear operators $S_{y} : E to F$, $y in Y$, and a function $h: Y to X$. In this paper, we consider maps having the property: cap^{k}_{i=1}Z(f_{i}) eqemptysetiffcap^{k}_{i=1}Z(Tf_{i}) eq emptyset, where $Z(f) = {f = 0}$. We characterize linear bijections with property (Z) between spaces of continuous functions, respectively, spaces of differentiable functions (including $C^{infty}$), as Banach-Stone maps. In particular, we confirm a conjecture of Ercan and Onal: Suppose that $X$ and $Y$ are realcompact spaces and $E$ and $F$ are Hausdorff topological vector lattices (respectively, $C^{*}$-algebras). Let $T: C(X,E) to C(Y,F)$ be a vector lattice isomorphism (respectively, *-algebra isomorphism) such that Z(f) eqemptysetiff Z(Tf) eqemptyset. Then $X$ is homeomorphic to $Y$ and $E$ is lattice isomorphic (respectively, $C^{*}$-isomorphic) to $F$. Some results concerning the continuity of $T$ are also obtained.



rate research

Read More

115 - Hakima Bouhadjera 2009
In this paper, we establish a common fixed point theorem for two pairs of occasionally weakly compatible single and set-valued maps satisfying a strict contractive condition in a metric space. Our result extends many results existing in the literature as those of Aliouche and Popa [15-20]. Also we establish another common fixed point theorem for four owc single and set-valued maps of Gregu% v{s} type which generalizes the results of Djoudi and Nisse, Pathak, Cho, Kang and Madharia and we end our work by giving a third theorem which extends the results given by Elamrani & Mehdaoui and Mbarki.
Let $A$ be an algebra and let $f(x_1,...,x_d)$ be a multilinear polynomial in noncommuting indeterminates $x_i$. We consider the problem of describing linear maps $phi:Ato A$ that preserve zeros of $f$. Under certain technical restrictions we solve the problem for general polynomials $f$ in the case where $A=M_n(F)$. We also consider quite general algebras $A$, but only for specific polynomials $f$.
We present a constructive proof of the Stone-Yosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for f-algebras. In turn, this theorem implies the Gelfand representation theorem for C*-algebras of operators on Hilbert spaces as formulated by Bishop and Bridges. Our proof is shorter, clearer, and we avoid the use of approximate eigenvalues.
147 - Fumio Hiai 2018
We obtain limit theorems for $Phi(A^p)^{1/p}$ and $(A^psigma B)^{1/p}$ as $ptoinfty$ for positive matrices $A,B$, where $Phi$ is a positive linear map between matrix algebras (in particular, $Phi(A)=KAK^*$) and $sigma$ is an operator mean (in particular, the weighted geometric mean), which are considered as certain reciprocal Lie-Trotter formulas and also a generalization of Katos limit to the supremum $Avee B$ with respect to the spectral order.
64 - Fumio Hiai , Yongdo Lim 2018
We first develop a theory of conditional expectations for random variables with values in a complete metric space $M$ equipped with a contractive barycentric map $beta$, and then give convergence theorems for martingales of $beta$-conditional expectations. We give the Birkhoff ergodic theorem for $beta$-values of ergodic empirical measures and provide a description of the ergodic limit function in terms of the $beta$-conditional expectation. Moreover, we prove the continuity property of the ergodic limit function by finding a complete metric between contractive barycentric maps on the Wasserstein space of Borel probability measures on $M$. Finally, the large derivation property of $beta$-values of i.i.d. empirical measures is obtained by applying the Sanov large deviation principle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا