Do you want to publish a course? Click here

The Araucaria Project. Infrared TRGB distances to the Carina and Fornax dwarf spheroidal galaxies

195   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present distance determinations for two Local Group dwarf spheroidal galaxies, Carina and Fornax, based on the near-infrared magnitudes of the tip of the red giant branch (TRGB). For Carina we derive true distance moduli of 20.09 and 20.13 mag in the J and K bands, respectively, while for Fornax the same distance modulus of 20.84 mag was derived in both filters. The statistical errors of these determinations are of order 0.03-0.04 mag, whereas the systematic uncertainties on the distances are 0.12 mag in the J band and 0.14 mag in the K band. The distances obtained from the near-infrared TRGB method in this paper agree very well with those obtained for these two galaxies from optical calibrations of the TRGB method, their horizontal branches, RR Lyrae variables, and the near-infrared magnitudes of their red clumps.



rate research

Read More

Deep near-infrared $J$- and $K$-band photometry of three Local Group dwarf spheroidal galaxies: Fornax, Carina, and Sculptor, is made available for the community. Until now, these data have only been used by the Araucaria Project to determine distances using the tip of the red giant and RR Lyrae stars. Now, we present the entire data collection in a form of a database, consisting of accurate $J$- and $K$-band magnitudes, sky coordinates, ellipticity measurements, and timestamps of observations, complemented by stars loci in their reference images. Depth of our photometry reaches about 22 mag at 5$sigma$ level, and is comparable to NIR surveys, like the UKIRT Infrared Deep Sky Survey (UKIDSS) or the VISTA Hemisphere Survey (VHS). Small overlap with VHS and no overlap with UKIDSS makes our database a unique source of quality photometry.
We have obtained single-phase near-infrared (NIR) magnitudes in the J- and K-bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818 +/- 0.015 (statistical) +/- 0.116 (systematic) mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 +/- 0.013 mag), the tip of the red giant branch (20.84 +/- 0.04 +/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5 percent level. This precision is expected to reach the level of 3 percent once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids.
We present new empirical calibrations of the absolute magnitude of the tip of the red giant branch (TRGB) in the optical I and near-infrared J, H, and K bands in terms of the (V-K)_0, (V-H)_0, and (J-K)_0 colors of the red giant branch. Our calibrations are based on the measurements in 19 fields in the Large and Small Magellanic Clouds, which span a wide (V-K)_0 color range of the brightest part of the red giant branch. We use a simple edge detection technique based on the comparison of the star count difference in two adjacent bins with the estimated Poisson noise. Further, we include the reddening and geometrical corrections, as well as the precise and accurate to 2% distance to the Large Magellanic Cloud. The calibration based on a (V-K) colors can be a robust tool to calculate with a great precision the absolute magnitude of the TRGB.
We have obtained accurate near-infrared photometry of the Tip of the Red Giant Branches in the Local Group galaxies Sculptor, NGC 6822, NGC 3109, IC 1613 and WLM. We have used the derived TRGB magnitudes together with the absolute magnitude calibration of the near-infrared TRGB magnitude of Valenti, Ferraro and Origlia to determine the distances of these five galaxies. The statis- tical errors in the distance moduli are typically 4%. The systematic uncertain- ties are dominated by the knowledge of the mean metallicities of the red giant branches, and are in the range of 5-8%. We observe a slight (2%) systematic difference between the distances derived from the J and K bands, respectively, which is within the 1 {sigma} errors of the distances. We compare the new distances derived in this paper with other recent distance determinations for our target galaxies and find excellent agreement. In particular, the near-infrared TRGB distances to the four dwarf irregular galaxies in the sample agree to better than 5% in each case with their Cepheid distances obtained from infrared photome- try, indicating that there is no appreciable systematic offset between these two fundamental techniques using old and young stellar populations, respectively.
We present new dynamical models of dwarf spheroidal galaxies (dSphs) in which both the stellar component and the dark halo are described by analytic distribution functions that depend on the action integrals. In their most general form these distribution functions can represent axisymmetric and possibly rotating stellar systems. Here, as a first application, we model the Fornax dSph, limiting ourselves, for simplicity, to the non rotating, spherical case. The models are compared with state-of-the-art spectroscopic and photometric observations of Fornax, exploiting the knowledge of the line-of-sight velocity distribution of the models and accounting for the foreground contamination from the Milky Way. The model that best fits the structural and kinematic properties of Fornax has a cored dark halo, with core size $r_{rm c}simeq1.03$ kpc. The dark-to-luminous mass ratio is $(M_{rm dm}/M_{star})|_{R_{rm eff}}simeq9.6$ within the effective radius $R_{rm eff} simeq 0.62,$kpc and $(M_{rm dm}/M_{star})|_{3 {rm kpc}} simeq 144$ within 3 kpc. The stellar velocity distribution is isotropic almost over the full radial range covered by the spectroscopic data and slightly radially anisotropic in the outskirts of the stellar distribution. The dark-matter annihilation $J$-factor and decay $D$-factor are, respectively, $log_{10}(J$ $[$GeV$^2$ cm$^{-5}])simeq18.34$ and $log_{10}(D$ $[$GeV cm$^{-2}])simeq18.55$, for integration angle $theta = 0.5^{circ}$. This cored halo model of Fornax is preferred, with high statistical significance, to both models with a Navarro, Frenk and White dark halo and simple mass-follows-light models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا