Do you want to publish a course? Click here

Updating Quantum Cryptography Report ver. 1

470   0   0.0 ( 0 )
 Added by Masahiro Takeoka
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Quantum cryptographic technology (QCT) is expected to be a fundamental technology for realizing long-term information security even against as-yet-unknown future technologies. More advanced security could be achieved using QCT together with contemporary cryptographic technologies. To develop and spread the use of QCT, it is necessary to standardize devices, protocols, and security requirements and thus enable interoperability in a multi-vendor, multi-network, and multi-service environment. This report is a technical summary of QCT and related topics from the viewpoints of 1) consensual establishment of specifications and requirements of QCT for standardization and commercialization and 2) the promotion of research and design to realize New-Generation Quantum Cryptography.



rate research

Read More

This is a chapter on quantum cryptography for the book A Multidisciplinary Introduction to Information Security to be published by CRC Press in 2011/2012. The chapter aims to introduce the topic to undergraduate-level and continuing-education students specializing in information and communication technology.
82 - Christian Majenz 2018
In this Thesis, several results in quantum information theory are collected, most of which use entropy as the main mathematical tool. *While a direct generalization of the Shannon entropy to density matrices, the von Neumann entropy behaves differently. A long-standing open question is, whether there are quantum analogues of unconstrained non-Shannon type inequalities. Here, a new constrained non-von-Neumann type inequality is proven, a step towards a conjectured unconstrained inequality by Linden and Winter. *IID quantum state merging can be optimally achieved using the decoupling technique. The one-shot results by Berta et al. and Anshu at al., however, had to bring in additional mathematical machinery. We introduce a natural generalized decoupling paradigm, catalytic decoupling, that can reproduce the aforementioned results when used analogously to the application of standard decoupling in the asymptotic case. *Port based teleportation, a variant of standard quantum teleportation protocol, cannot be implemented perfectly. We prove several lower bounds on the necessary number of output ports N to achieve port based teleportation for given error and input dimension, showing that N diverges uniformly in the dimension of the teleported quantum system, for vanishing error. As a byproduct, a new lower bound for the size of the program register for an approximate universal programmable quantum processor is derived. *In the last part, we give a new definition for information-theoretic quantum non-malleability, strengthening the previous definition by Ambainis et al. We show that quantum non-malleability implies secrecy, analogous to quantum authentication. Furthermore, non-malleable encryption schemes can be used as a primitive to build authenticating encryption schemes. We also show that the strong notion of authentication recently proposed by Garg et al. can be fulfilled using 2-designs.
Recent results of Kaplan et al., building on previous work by Kuwakado and Morii, have shown that a wide variety of classically-secure symmetric-key cryptosystems can be completely broken by quantum chosen-plaintext attacks (qCPA). In such an attack, the quantum adversary has the ability to query the cryptographic functionality in superposition. The vulnerable cryptosystems include the Even-Mansour block cipher, the three-round Feistel network, the Encrypted-CBC-MAC, and many others. In this work, we study simple algebraic adaptations of such schemes that replace $(mathbb Z/2)^n$ addition with operations over alternate finite groups--such as $mathbb Z/{2^n}$--and provide evidence that these adaptations are qCPA-secure. These adaptations furthermore retain the classical security properties (and basic structural features) enjoyed by the original schemes. We establish security by treating the (quantum) hardness of the well-studied Hidden Shift problem as a basic cryptographic assumption. We observe that this problem has a number of attractive features in this cryptographic context, including random self-reducibility, hardness amplification, and--in many cases of interest--a reduction from the search version to the decisional version. We then establish, under this assumption, the qCPA-security of several such Hidden Shift adaptations of symmetric-key constructions. We show that a Hidden Shift version of the Even-Mansour block cipher yields a quantum-secure pseudorandom function, and that a Hidden Shift version of the Encrypted CBC-MAC yields a collision-resistant hash function. Finally, we observe that such adaptations frustrate the direct Simons algorithm-based attacks in more general circumstances, e.g., Feistel networks and slide attacks.
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
Quantum key distribution (QKD) is a concept of secret key exchange supported by fundamentals of quantum physics. Its perfect realization offers unconditional key security, however, known practical schemes are potentially vulnerable if the quantum channel loss exceeds a certain realization-specific bound. This discrepancy is caused by the fact that any practical photon source has a non-zero probability of emitting two or more photons at a time, while theory needs exactly one. We report an essentially different QKD scheme based on both quantum physics and theory of relativity. It works flawlessly with practical photon sources at arbitrary large channel loss. Our scheme is naturally tailored for free-space optical channels, and may be used in ground-to-satellite communications, where losses are prohibitively large and unpredictable for conventional QKD.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا