No Arabic abstract
Using the Infrared Spectrograph on board the Spitzer Space Telescope, we present low-resolution (64 < lambda / dlambda < 124), mid-infrared (20-38 micron) spectra of 23 high-redshift ULIRGs detected in the Bootes field of the NOAO Deep Wide-Field Survey. All of the sources were selected to have 1) fnu(24 micron) > 0.5 mJy; 2) R-[24] > 14 Vega mag; and 3) a prominent rest-frame 1.6 micron stellar photospheric feature redshifted into Spitzers 3-8 micron IRAC bands. Of these, 20 show emission from polycyclic aromatic hydrocarbons (PAHs), usually interpreted as signatures of star formation. The PAH features indicate redshifts in the range 1.5 < z < 3.0, with a mean of <z>=1.96 and a dispersion of 0.30. Based on local templates, these sources have extremely large infrared luminosities, comparable to that of submillimeter galaxies. Our results confirm previous indications that the rest-frame 1.6 micron stellar bump can be efficiently used to select highly obscured starforming galaxies at z~2, and that the fraction of starburst-dominated ULIRGs increases to faint 24 micron flux densities. Using local templates, we find that the observed narrow redshift distribution is due to the fact that the 24 micron detectability of PAH-rich sources peaks sharply at z = 1.9. We can analogously explain the broader redshift distribution of Spitzer-detected AGN-dominated ULIRGs based on the shapes of their SEDs. Finally, we conclude that z~2 sources with a detectable 1.6 micron stellar opacity feature lack sufficient AGN emission to veil the 7.7 micron PAH band.
Using Herschel PACS and SPIRE observations of Lockman Hole-North and GOODS-N as part of the HerMES project, we explore the far-IR properties of a sample of mid-IR selected starburst dominated ultra-luminous infrared galaxies (ULIRGs) at z ~ 2. The selection of the sample is based on the detection of the stellar bump that appears in the SED of star-forming galaxies at 1.6um. We derive robust estimates of infrared luminosities (L_IR) and dust temperatures (T_d) of the population and find that while the luminosities in our sample span less than an order of magnitude (12.24< log(L_IR/Lo) < 12.94), they cover a wide range of dust temperatures (25< T_d < 62 K). Galaxies in our sample range from those that are as cold as high-z sub-millimeter galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. Nevertheless, our sample has median T_d=42.3 K, filling the gap between SMGs and OFRGs, bridging the two populations. We demonstrate that a significant fraction of our sample would be missed from ground based (sub)mm surveys (850-1200um) showing that the latter introduce a bias towards the detection of colder sources. We conclude that Herschel} observations, confirm the existence of high-z ULIRGs warmer than SMGs, show that the mid-IR selection of high-z ULIRGs is not T_d-dependent, reveal a large dispersion in T_d of high-z ULIRGs, and provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground based (sub)mm surveys.
We present Spitzer observations of Lya Blobs (LAB) at z=2.38-3.09. The mid-infrared ratios (4.5/8um and 8/24um) indicate that ~60% of LAB infrared counterparts are cool, consistent with their infrared output being dominated by star formation and not active galactic nuclei (AGN). The rest have a substantial hot dust component that one would expect from an AGN or an extreme starburst. Comparing the mid-infrared to submillimeter fluxes (~850um or rest frame far infrared) also indicates a large percentage (~2/3) of the LAB counterparts have total bolometric energy output dominated by star formation, although the number of sources with sub-mm detections or meaningful upper limits remains small (~10). We obtained Infrared Spectrograph (IRS) spectra of 6 infrared-bright sources associated with LABs. Four of these sources have measurable polycyclic aromatic hydrocarbon (PAH) emission features, indicative of significant star formation, while the remaining two show a featureless continuum, indicative of infrared energy output completely dominated by an AGN. Two of the counterparts with PAHs are mixed sources, with PAH line-to-continuum ratios and PAH equivalent widths indicative of large energy contributions from both star formation and AGN. Most of the LAB infrared counterparts have large stellar masses, around 10^11 Mo. There is a weak trend of mass upper limit with the Lya luminosity of the host blob, particularly after the most likely AGN contaminants are removed. The range in likely energy sources for the LABs found in this and previous studies suggests that there is no single source of power that is producing all the known LABs.
We present ultra-deep mid-IR spectra of 48 infrared-luminous galaxies in the GOODS-South field obtained with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14 - 0.5 mJy at 24 um) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using PAH and Si absorption features. Only few of these galaxies (5% at z~1 and 12% at z~2) have their total infrared luminosity dominated by emission from AGN. The averaged mid-IR spectra of the z~1 LIRGs and of the z~2 ULIRGs are very similar to the averaged spectrum of local starbursts and HII-like ULIRGs, respectively. We find that 6.2um PAH equivalent widths reach a plateau of ~1 um for L(24 mu) < 1E11 L(sun). At higher luminosities, EW (6.2 mu) anti-correlates with L(24 um). Intriguingly, high-z ULIRGs and SMG lie above the local EW (6.2 um) - L(24 um) relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z~2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L(FIR)/L(1600A) ratios higher than those of starburst galaxies at a given UV slope. The ``IR excess (Daddi et al. 2007) is mostly due to strong 7.7 um PAH emission and under-estimation of UV dust extinction. On the basis of the AGN-powered L (6 um) continuum measured directly from the mid-IR spectra, we estimate an average intrinsic X-ray AGN luminosity of L(2-10 keV) = (0.1 +/- 0.6) 1E43 erg/s, a value substantially lower than the prediction by Daddi et al. (2007).
We explore the relationships between the Polycyclic Aromatic Hydrocarbon (PAH) feature strengths, mid-infrared continuum luminosities, far-infrared spectral slopes, optical spectroscopic classifications, and silicate optical depths within a sample of 107 ULIRGs observed with the Infrared Spectrograph on the Spitzer Space Telescope. The detected 6.2 micron PAH equivalent widths (EQWs) in the sample span more than two orders of magnitude (0.006-0.8 micron), and ULIRGs with HII-like optical spectra or steep far-infrared spectral slopes (S_{25} / S_{60} < 0.2) typically have 6.2 micron PAH EQWs that are half that of lower-luminosity starbursts. A significant fraction (~40-60%) of HII-like, LINER-like, and cold ULIRGs have very weak PAH EQWs. Many of these ULIRGs also have large (tau_{9.7} > 2.3) silicate optical depths. The far-infrared spectral slope is strongly correlated with PAH EQW, but not with silicate optical depth. In addition, the PAH EQW decreases with increasing rest-frame 24 micron luminosity. We argue that this trend results primarily from dilution of the PAH EQW by continuum emission from dust heated by a compact central source, probably an AGN. High luminosity, high-redshift sources studied with Spitzer appear to have a much larger range in PAH EQW than seen in local ULIRGs, which is consistent with extremely luminous starburst systems being absent at low redshift, but present at early epochs.
We present spectra of a sample of Herbig Ae and Be (HAeBe) stars obtained with the Infrared Spectrograph on the Spitzer Space Telescope. All but one of the Herbig stars show emission from polycyclic aromatic hydrocarbons (PAHs) and seven of the spectra show PAH emission, but no silicate emission at 10 microns. The central wavelengths of the 6.2, 7.7--8.2, and 11.3 micron emission features decrease with stellar temperature, indicating that the PAHs are less photo-processed in cooler radiation fields. The apparent low level of photo processing in HAeBe stars, relative to other PAH emission sources, implies that the PAHs are newly exposed to the UV-optical radiation fields from their host stars. HAeBe stars show a variety of PAH emission intensities and ionization fractions, but a narrow range of PAH spectral classifications based on positions of major PAH feature centers. This may indicate that, regardless of their locations relative to the stars, the PAH molecules are altered by the same physical processes in the proto-planetary disks of intermediate-mass stars. Analysis of the mid-IR spectral energy distributions indicates that our sample likely includes both radially flared and more flattened/settled disk systems, but we do not see the expected correlation of overall PAH emission with disk geometry. We suggest that the strength of PAH emission from HAeBe stars may depend not only on the degree of radial flaring, but also on the abundance of PAHs in illuminated regions of the disks and possibly on the vertical structure of the inner disk as well.