Here we propose and demonstrate an all-optical wavelength-routing approach which uses a tuning mechanism based upon the optical gradient force in a specially-designed nano-optomechanical system. The resulting mechanically-compliant spiderweb resonantor realizes seamless wavelength routing over a range of 3000 times the intrinsic channel width, with a tuning efficiency of 309-GHz/mW, a switching time of less than 200-ns, and 100% channel-quality preservation over the entire tuning range. These results indicate the potential for radiation pressure actuated devices to be used in a variety of photonics applications, such as channel routing/switching, buffering, dispersion compensation, pulse trapping/release, and widely tunable lasers.