No Arabic abstract
We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.
We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of the VHE emission is centered near the peak of the coincident 12CO (J = 1-0) emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/- 0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.
The morphology and the distribution of material observed in SNRs reflect the interaction of the SN blast wave with the ambient environment, the physical processes associated with the SN explosion and the internal structure of the progenitor star. IC 443 is a MM SNR located in a quite complex environment: it interacts with a molecular cloud in the NW and SE areas and with an atomic cloud in the NE. In this work we aim at investigating the origin of the complex morphology and multi-thermal X-ray emission observed in SNR IC 443, through the study of the effect of the inhomogeneous ambient medium in shaping its observed structure, and the exploration of the main parameters characterizing the remnant. We developed a 3D HD model for IC 443, which describes the interaction of the SNR with the environment, parametrized in agreement with the results of the multi-wavelength data analysis. We performed an ample exploration of the parameter space describing the initial blast wave and the environment, and the surrounding clouds. From the simulations, we synthesized the X-ray emission maps and spectra and compared them with actual X-ray data collected by XMM-Newton. Our model explains the origin of the complex X-ray morphology of SNR IC 443 in a natural way, being able to reproduce, for the first time, most of the observed features, including the centrally-peaked X-ray morphology (characteristic of MM SNRs) when considering the origin of the explosion at the position where the PWN CXOU J061705.3+222127 was at the time of the explosion. In the model which best reproduces the observations, the mass of the ejecta and the energy of the explosion are $sim 7 M_odot$ and $sim10^{51}$ erg, respectively. From the exploration of the parameter space, we found that the density of the clouds is $n>300$ cm$^{-3}$ and that the age of SNR IC 443 is $sim8000$ yr.
VERITAS observed the supernova remnants Cassiopeia A (Cas A) and IC 443 during 2007, resulting in strong TeV detections of both sources. Cas A is a young remnant, and bright in both the radio and nonthermal X-rays, both tracers of cosmic-ray electrons. IC 443 is a middle-aged composite remnant interacting with a molecular cloud; the molecular cloud provides an enhanced density of target material for hadronic cosmic rays to produce TeV gamma rays via pion decay. The TeV morphology - point-like for Cas A and extended for IC 443 - will be discussed in the context of existing multiwavelength data on the remnants.
We present near-infrared (2.5 - 5.0 um) spectra of shocked H2 gas in the supernova remnant IC 443, obtained with the satellite AKARI. Three shocked clumps-known as B, C, and G-and one background region were observed, and only H2 emission lines were detected. Except the clump B, the extinctioncorrected level population shows the ortho-to-para ratio of ~ 3.0. From the level population of the clumps C and G-both AKARIs only and the one extended with previous mid-infrared observations-we found that the v = 0 levels are more populated than the v > 0 levels at a fixed level energy, which cannot be reproduced by any combination of H2 gas in Local Thermodynamic Equilibrium. The populations are described by the two-density power-law thermal admixture model, revised to include the collisions with H atoms. We attributed the lower (n(H2)=10^(2.8-3.8) cm-3) and higher (n(H2)=10^(5.4-5.8) cm-3) density gases to the shocked H2 gas behind C-type and J-type shocks, respectively, based on several arguments including the obtained high H I abundance n(H I)/n(H2)=0.01. Under the hierarchical picture of molecular clouds, the C-type and J-type shocks likely propagate into clumps and clouds (interclump media), respectively. The power-law index b of 1.6 and 3.5, mainly determined by the lower density gas, is attributed to the shock-velocity diversity, which may be a natural result during shock-cloud interactions. According to our results, H2 v = 1 - 0 S(1) emission is mainly from J-shocks propagating into interclump media. The H2 emission was also detected at the background region, and this diffuse H2 emission may originate from collisional process in addition to the ultraviolet photon pumping.
The physical origin of the overionized recombining plasmas (RPs) in supernova remnants (SNRs) has been attracting attention because its understanding provides new insight into SNR evolution. However, the process of the overionization, although it has been discussed in some RP-SNRs, is not yet fully understood. Here we report on spatially resolved spectroscopy of X-ray emission from IC~443 with {it XMM-Newton}. We find that RPs in regions interacting with dense molecular clouds tend to have lower electron temperature and lower recombination timescale. These tendencies indicate that RPs in these regions are cooler and more strongly overionized, which is naturally interpreted as a result of rapid cooling by the molecular clouds via thermal conduction. Our result on IC~443 is similar to that on W44 showing evidence for thermal conduction as the origin of RPs at least in older remnants. We suggest that evaporation of clumpy gas embedded in a hot plasma rapidly cools the plasma as was also found in the W44 case. We also discuss if ionization by protons accelerated in IC~443 is responsible for RPs. Based on the energetics of particle acceleration, we conclude that the proton bombardment is unlikely to explain the observed properties of RPs.