Do you want to publish a course? Click here

Circularly polarised X-rays as a probe of non-collinear magnetic order in multiferroic TbMnO3

121   0   0.0 ( 0 )
 Added by Helen Walker
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Non-resonant X-ray magnetic scattering has been used to study the magnetic structure of multiferroic TbMnO3 in its ferroelectric phase. Circularly polarized X-rays were combined with a full polarization analysis of the scattered beam to reveal important new information on the magnetic structure of this canonical multiferroic. An applied electric field is shown to create a magnetic nearly mono-domain state in which the cylcoidal order on the Mn sublattice rotates either clockwise or counter-clockwise depending on the sign of the field. It is demonstrated how this technique provides sensitivity to the absolute sense of rotation of the Mn moments, and to components of the ordering on the Tb sublattice and phase shifts that earlier neutron diffraction experiments could not resolve.



rate research

Read More

81 - D. Senff , P. Link , K. Hradil 2006
The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5meV-mode is in perfect agreement with recent infra-red-spectroscopy data giving strong support to its interpretation as an hybridized phonon-magnon excitation.
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.
Multiferroic TbMnO3 is investigated using x-ray diffraction in high magnetic fields. Measurements on first and second harmonic structural reflections due to modulations induced by the Mn and Tb magnetic order are presented as function of temperature and field oriented along the a and b-directions of the crystal. The relation to changes in ordering of the rare earth moments in applied field is discussed. Observations below T_N(Tb) without and with applied magnetic field point to a strong interaction of the rare earth order, the Mn moments and the lattice. Also, the incommensurate to commensurate transition of the wave vector at the critical fields is discussed with respect to the Tb and Mn magnetic order and a phase diagram on basis of these observations for magnetic fields H||a and H||b is presented. The observations point to a complicated and delicate magneto-elastic interaction as function of temperature and field.
Recent ultrafast magnetic-sensitive measurements [Phys. Rev. B 92, 184429 (2015) and Phys. Rev. B 96, 184414 (2017)] have revealed a delayed melting of the long-range cycloid spin-order in TbMnO$_3$ following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting and is interpreted as the fingerprint of the formation of anti-Jahn Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. Furthermore, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.
We propose that non-collinear magnetic order in quantum magnets can harbor a novel higher-order topological magnon phase with non-Hermitian topology and hinge magnon modes. We consider a three-dimensional system of interacting local moments on stacked-layers of honeycomb lattice. It initially favors a collinear magnetic order along an in-plane direction, which turns into a non-collinear order upon applying an external magnetic field perpendicular to the easy axis. We exploit the non-Hermitian nature of the magnon Hamiltonian to show that this field-induced transition corresponds to the transformation from a topological magnon insulator to a higher-order topological magnon state with a one-dimensional hinge mode. As a concrete example, we discuss the recently-discovered monoclinic phase of the thin chromium trihalides, which we propose as the first promising material candidate of the higher-order topological magnon phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا