Do you want to publish a course? Click here

Binary reaction decays from 24Mg+12C

168   0   0.0 ( 0 )
 Added by Christian Beck
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Charged particle and gamma decays in 24Mg* are investigated for excitation energies where quasimolecular resonances appear in 12C+12C collisions. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are discussed within the measured 24Mg* excitation energy region. The inverse kinematics reaction 24Mg+12C is studied at E_lab(24Mg) = 130 MeV, an energy which enables the population of 24Mg states decaying into 12C+12C resonant break-up states. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated gamma decays studied. Coincident events associated with inelastic and alpha-transfer channels have been selected by choosing the excitation energy or the entry point via the two-body Q-values. The analysis of the binary reaction channels is presented with a particular emphasis on 24Mg-gamma, 20Ne-gamma and 16O-gamma coincidences. New information (spin and branching ratios) is deduced on high-energy states in 24Mg and 16O, respectively.



rate research

Read More

The occurence of exotic shapes in light N=Z alpha-like nuclei is investigated for 24Mg+12C and 32S+24Mg. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures with low spin are presented. For both reactions, exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility of Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated $gamma$-decays studied. The analysis of the binary and ternary reaction channels is discussed.
The gamma-decay properties of 24Mg excited states are investigated in the inverse reaction 24Mg+12C at E(24Mg) = 130 MeV. At this energy the direct inelastic scattering populates a 24Mg* energy region where 12C+12C breakup resonances can occur. Very exclusive data were collected with the Binary Reaction Spectrometer (BRS) in coincidence with EUROBALL installed at the VIVITRON Tandem facility of the IReS at Strasbourg. The experimental detection system is decribed and preliminary results of binary reaction coincid data are presented.
102 - C. Beck , et al 2008
Charged particle and gamma decays in light alpha-like nuclei are investigated for 24Mg+12C. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are presented. The inverse kinematics reaction 24Mg+12C is studied at Elab(24Mg) = 130 MeV. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated gamma decays studied. Coincident events from $alpha$-transfer channels were selected by choosing the excitation energy or the entry point via the two-body Q-values. The analysis of the binary reaction channels is presented with a particular emphasis on 20Ne-gamma and 16O-gamma coincidences.
In the present work, we report our in depth study of 12C(p,pgamma)12C reaction both experimentally and theoretically with proton beam energy ranging from 8 MeV to 22 MeV. The angular distributions were measured at six different angles. We discuss the gamma angular distributions, total cross sections values for 4.438, 9.64, 12.7 and 15.1 MeV states. We also describe the theoretical interpretation of our measurements using optical model analysis. We also report the branching ratios from our measurements. For the first time, we have measured the the cross section and branching ratio for the 9.64 MeV state.
A general framework for deconvoluting the effects of energy averaging on charged-particle reaction measurements is presented. There are many potentially correct approaches to the problem; the relative merits of some of are discussed. These deconvolution methods are applied to recent 12C(alpha,gamma)16O measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا