Do you want to publish a course? Click here

Spin-Related Current Suppression in a Semiconductor-Quantum-Dot Spin-Diode Structure

152   0   0.0 ( 0 )
 Added by Kohei Hamaya
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally study the transport features of electrons in a spin-diode structure consisting of a single semiconductor quantum dot (QD) weakly coupled to one nonmagnetic (NM) and one ferromagnetic (FM) lead, in which the QD has an artificial atomic nature. A Coulomb stability diamond shows asymmetric features with respect to the polarity of the bias voltage. For the regime of two-electron tunneling, we find anomalous suppression of the current for both forward and reverse bias. We discuss possible mechanisms of the anomalous current suppression in terms of spin blockade via the QD/FM interface at the ground state of a two-electron QD.



rate research

Read More

166 - Giordano Scappucci 2021
In this perspective piece, I benchmark gallium arsenide, silicon, and germanium as material platforms for gate-defined quantum dot spin qubits. I focus on materials stacks, quantum dot architectures, bandstructure properties and qualifiers for disorder from electrical transport. This brief note is far from being exhaustive and should be considered a first introduction to the materials challenges and opportunities towards a larger spin qubit quantum processor.
Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits.
Kondo-type zero-bias anomalies have been frequently observed in quantum dots occupied by two electrons and attributed to a spin-triplet configuration that may become stable under particular circumstances. Conversely, zero-bias anomalies have been so far quite elusive when quantum dots are occupied by an even number of electrons greater than two, even though a spin-triplet configuration is more likely to be stabilized there than for two electrons. We propose as an origin of this phenomenon the spin-orbit interaction, and we show how it profoundly alters the conventional Kondo screening scenario in the simple case of a laterally confined quantum dot with four electrons.
Electron states in a inhomogeneous Ge/Si quantum dot array with groups of closely spaced quantum dots were studied by conventional continuous wave ($cw$) ESR and spin-echo methods. We find that the existence of quantum dot groups allows to increase the spin relaxation time in the system. Created structures allow us to change an effective localization radius of electrons by external magnetic field. With the localization radius close to the size of a quantum dot group, we obtain fourfold increasing spin relaxation time $T_1$, as compared to conventional homogeneous quantum dot arrays. This effect is attributed to averaging of local magnetic fields related to nuclear spins $^{29}$Si and stabilization of $S_z$-polarization during electron back-and-forth motion within a quantum dot group.
We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the short and long range exchange interaction of Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how design of the electronic levels of a quantum dot enable the design of an exciton, control of the quantum interference and hence engineering of light-Mn interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا