Do you want to publish a course? Click here

Applications of quark-hadron duality in F2 structure function

174   0   0.0 ( 0 )
 Added by Simona Malace
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Inclusive electron-proton and electron-deuteron inelastic cross sections have been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the experiment E00-116. These measurements are used to extend to larger x and Q2 precision, quantitative, studies of the phenomenon of quark-hadron duality. Our analysis confirms, both globally and locally, the apparent violation of quark-hadron duality previously observed at a Q2 of 3.5 GeV2 when resonance data are compared to structure function data created from CTEQ6M and MRST2004 parton distribution functions (PDFs). More importantly, our new data show that this discrepancy saturates by Q2 ~ 4 Gev2, becoming Q2 independent. This suggests only small violations of Q2 evolution by contributions from the higher-twist terms in the resonance region which is confirmed by our comparisons to ALEKHIN and ALLM97.We conclude that the unconstrained strength of the CTEQ6M and MRST2004 PDFs at large x is the major source of the disagreement between data and these parameterizations in the kinematic regime we study and that, in view of quark-hadron duality, properly averaged resonance region data could be used in global QCD fits to reduce PDF uncertainties at large x.



rate research

Read More

We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and $^3$He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.
Using data from the recent BONuS experiment at Jefferson Lab, which utilized a novel spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F_2 structure function. The data are used to reconstruct the lowest few (N=2, 4 and 6) moments of F_2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark--hadron duality holds locally for the neutron in the second and third resonance regions down to Q^2 ~ 1 GeV^2, with violations possibly up to 20% observed in the first resonance region.
We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.
An exhaustive number of QCD finite energy sum rules for $tau$-decay together with the latest updated ALEPH data is used to test the assumption of global duality. Typical checks are the absence of the dimension $d=2$ condensate, the equality of the gluon condensate extracted from vector or axial vector spectral functions, the Weinberg sum rules, the chiral condensates of dimensions $d=6$ and $d=8$, as well as the extraction of some low-energy parameters of chiral perturbation theory. Suitable pinched linear integration kernels are introduced in the sum rules in order to suppress potential quark-hadron duality violations and experimental errors. We find no compelling indications of duality violations in hadronic $tau$-decay in the kinematic region above $ssimeq2.2$ GeV$^{2}$ for these kernels.
Hadronic spectral functions measured by the ALEPH collaboration in the vector and axial-vector channels are used to study potential quark-hadron duality violations (DV). This is done entirely in the framework of pinched kernel finite energy sum rules (FESR), i.e. in a model independent fashion. The kinematical range of the ALEPH data is effectively extended up to $s = 10; {mbox{GeV}^2}$ by using an appropriate kernel, and assuming that in this region the spectral functions are given by perturbative QCD. Support for this assumption is obtained by using $e^+ e^-$ annihilation data in the vector channel. Results in both channels show a good saturation of the pinched FESR, without further need of explicit models of DV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا