Do you want to publish a course? Click here

What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models

209   0   0.0 ( 0 )
 Added by Spiros Patsourakos
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO were intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called `EIT waves is still strongly debated. They are considered to be either wave (primarily fast-mode MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies with the limitations of the EIT observations which have been used almost exclusively for their study. Their limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on December 07, 2007 when the STEREO spacecraft separation was $approx 45^circ$. Both a small flare and a CME were associated with the wave cadence, and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.



rate research

Read More

In this work we use solar observations with the ALMA radio telescope at the wavelength of 1.21 mm. The aim of the analysis is to improve understanding of the solar chromosphere, a dynamic layer in the solar atmosphere between the photosphere and corona. The study has an observational and a modeling part. In the observational part full-disc solar images are analyzed. Based on a modified FAL atmospheric model, radiation models for various observed solar structures are developed. Finally, the observational and modeling results are compared and discussed.
175 - P. C. Liewer , J. Qiu , C. Lindsey 2017
Seismic maps of the Suns far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http:/jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observation of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether or not new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that, while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a farside region.
We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board Autonomy 2 (PROBA2) spacecraft on January 27, 2011. All three extreme-ultraviolet(EUV) waves originate from the same active region NOAA 11149 positioned at N30E15 in the STEREO-A field-of-view and on the limb in PROBA2. We derive for the three primary EUV waves start velocities in the range of ~310 km/s for the weakest up to ~500 km/s for the strongest event. Each large-scale wave is reflected at the border of the extended coronal hole at the southern polar region. The average velocities of the reflected waves are found to be smaller than the mean velocities of their associated direct waves. However, the kinematical study also reveals that in each case the end velocity of the primary wave matches the initial velocity of the reflected wave. In all three events the primary and reflected waves obey the Huygens-Fresnel principle, as the incident angle with ~10{deg} to the normal is of the same size as the angle of reflection. The correlation between the speed and the strength of the primary EUV waves, the homologous appearance of both the primary and the reflected waves, and in particular the EUV wave reflections themselves implicate that the observed EUV transients are indeed nonlinear large-amplitude MHD waves.
In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterisation of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events commonly interpreted as a small-scale (about 35 arcsec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its looptops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipoles footpoints. Five events were termed micro-CME type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. A few jets are also found in equatorial coronal holes. The typical lifetimes in the SECCHI/EUVI (Extreme UltraViolet Imager) field of view between 1.0 to 1.7 solar radius and in SECCHI/COR1 field of view between 1.4 to 4 solar radius are obtained, and the derived speed are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more details in further studies.
We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the DEM measurements using EUV observations. We derived line of sight component of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on February 3, 2011 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limit of the coronal longitudinal magnetic fields were determined as 100 - 210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager (HMI). However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons; (a) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, (b) the underestimation of the coronal magnetic field resulting from the potential field assumption.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا