Do you want to publish a course? Click here

A Multi-Wavelength Study of Parent Volatile Abundances in Comet C/2006 M4 (SWAN)

110   0   0.0 ( 0 )
 Added by Michael DiSanti
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Volatile organic emissions were detected post-perihelion in the long period comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARO 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (~ 10 - 20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C/2006 M4 had nearly normal C2H6 and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on IR observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time.



rate research

Read More

116 - B. Yang , J. Keane , K. Meech 2014
Dynamically new comet C/2011 L4 (PanSTARRS) is one of the brightest comets since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner Solar system. A strong absorption band of water ice at 2.0 $mu$m was detected in the near infrared spectra, taken with the 8-m Gemini-North and 3-m IRTF telescopes. The companion 1.5 $mu$m band of water ice, however, was not observed. Spectral modeling show that the absence of the 1.5 $mu$m feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e. CN, HCN or CO) were observed pre-perihelion either in the optical or in the sub-millimeter. 3-$sigma$ upper limits to the CN and CO production rates were derived. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio $>$ 4.
During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modelling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration and inferred parent body C concentrations range from 0.0004 to 0.11 wt.%. Parent bodies fall into 2 compositional clusters characterized by cores with medium, and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed system extraction to degassing of a wholly molten body, show that significant open system silicate melting and volatile loss is required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss, and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.
Comet composition provides critical information on the chemical and physical processes that took place during the formation of the Solar system. We report here on millimetre spectroscopic observations of the long-period bright comet C/2014 Q2 (Lovejoy) using the Atacama Pathfinder Experiment (APEX) band 1 receiver between 2015 January UT 16.948 to 18.120, when the comet was at heliocentric distance of 1.30 AU and geocentric distance of 0.53 AU. Bright comets allow for sensitive observations of gaseous volatiles that sublimate in their coma. These observations allowed us to detect HCN, CH3OH (multiple transitions), H2CO and CO, and to measure precise molecular production rates. Additionally, sensitive upper limits were derived on the complex molecules acetaldehyde (CH3CHO) and formamide (NH2CHO) based on the average of the strongest lines in the targeted spectral range to improve the signal-to-noise ratio. Gas production rates are derived using a non-LTE molecular excitation calculation involving collisions with H2O and radiative pumping that becomes important in the outer coma due to solar radiation. We find a depletion of CO in C/2014 Q2 (Lovejoy) with a production rate relative to water of 2 per cent, and relatively low abundances of Q(HCN)/Q(H2O), 0.1 per cent, and Q(H2CO)/Q(H2O), 0.2 per cent. In contrast the CH3OH relative abundance Q(CH3OH)/Q(H2O), 2.2 per cent, is close to the mean value observed in other comets. The measured production rates are consistent with values derived for this object from other facilities at similar wavelengths taking into account the difference in the fields of view. Based on the observed mixing ratios of organic molecules in four bright comets including C/2014 Q2, we find some support for atom addition reactions on cold dust being the origin of some of the molecules.
We aimed to measure the H2O and dust production rates in C/2006 W3 (Christensen) with the Herschel Space Observatory at a heliocentric distance of ~ 5 AU. We have searched for emission in the H2O and NH3 ground-state rotational transitions at 557 GHz and 572 GHz, simultaneously, with HIFI onboard Herschel on UT 1.5 September 2010. Photometric observations of the dust coma in the 70 and 160 {mu}m channels were acquired with the PACS instrument on UT 26.5 August 2010. A tentative 4-{sigma} H2O line emission feature was found in the spectra obtained with the HIFI wide-band and high-resolution spectrometers, from which we derive a water production rate of $2.0(5) times 10^{27}$ molec. s$^{-1}$. A 3-{sigma} upper limit for the ammonia production rate of <$1.5 times 10^{27}$ molec. s$^{-1}$ is obtained taking into account the contribution from all hyperfine components. The blueshift of the water line detected by HIFI suggests preferential emission from the subsolar point. However, it is also possible that water sublimation occurs in small ice-bearing grains that are emitted from an active region on the nucleus surface at a speed of ~ 0.2 km s$^{-1}$. The dust thermal emission was detected in the 70 and 160 {mu}m filters, with a more extended emission in the blue channel. The dust production rates, obtained for a dust size distribution index that explains the fluxes at the photocenters of the PACS images, lie in the range 70-110 kg s$^{-1}$. Scaling the CO production rate measured post-perihelion at 3.20 and 3.32 AU, these values correspond to a dust-to-gas production rate ratio in the range 0.3-0.4. The dust production rates derived in August 2010 are roughly one order of magnitude lower than in September 2009, suggesting that the dust-to-gas production rate ratio remained approximately constant during the period when the activity became increasingly dominated by CO outgassing.
We obtained the first maps of Jupiter at 1-3 mm wavelength with the Atacama Large Millimeter/Submillimeter Array (ALMA) on 3-5 January 2017, just days after an energetic eruption at 16.5S jovigraphic latitude had been reported by the amateur community, and about 2-3 months after the detection of similarly energetic eruptions in the northern hemisphere, at 22.2-23.0N. Our observations, probing below the ammonia cloud deck, show that the erupting plumes in the SEB bring up ammonia gas from the deep atmosphere. While models of plume eruptions that are triggered at the water condensation level explain data taken at uv-visible and mid-infrared wavelengths, our ALMA observations provide a crucial, hitherto missing, link in the moist convection theory by showing that ammonia gas from the deep atmosphere is indeed brought up in these plumes. Contemporaneous HST data show that the plumes reach altitudes as high as the tropopause. We suggest that the plumes at 22.2-23.0N also rise up well above the ammonia cloud deck, and that descending air may dry the neighboring belts even more than in quiescent times, which would explain our observations in the north.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا