Do you want to publish a course? Click here

Existence and stability of solitons for the nonlinear Schrodinger equation on hyperbolic space

142   0   0.0 ( 0 )
 Added by Jeremy Marzuola
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study the existence and stability of ground state solutions or solitons to a nonlinear stationary equation on hyperbolic space. The method of concentration compactness applies and shows that the results correlate strongly to those of Euclidean space.



rate research

Read More

We consider the Cauchy problem for the Gross-Pitaevskii (GP) equation. Using the DBAR generalization of the nonlinear steepest descent method of Deift and Zhou we derive the leading order approximation to the solution of the GP in the solitonic region of space time $|x| < 2t$ for large times and provide bounds for the error which decay as $t to infty$ for a general class of initial data whose difference from the non-vanishing background possesss a fixed number of finite moments and derivatives. Using properties of the scattering map for (GP) we derive as a corollary an asymptotic stability result for initial data which are sufficiently close to the N-dark soliton solutions of (GP).
In this paper we consider the inhomogeneous nonlinear Schrodinger equation $ipartial_t u +Delta u=K(x)|u|^alpha u,, u(0)=u_0in H^s({mathbb R}^N),, s=0,,1,$ $Ngeq 1,$ $|K(x)|+|x|^s| abla^sK(x)|lesssim |x|^{-b},$ $0<b<min(2,N-2s),$ $0<alpha<{(4-2b)/(N-2s)}$. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted $L^2$-space for a new range $alpha_0(b)<alpha<(4-2b)/N$. The value $alpha_0(b)$ is the positive root of $Nalpha^2+(N-2+2b)alpha-4+2b=0,$ which extends the Strauss exponent known for $b=0$. Our results improve the known ones for $K(x)=mu|x|^{-b}$, $muin mathbb{C}$ and apply for more general potentials. In particular, we show the impact of the behavior of the potential at the origin and infinity on the allowed range of $alpha$. Some decay estimates are also established for the defocusing case. To prove the scattering results, we give a new criterion taking into account the potential $K$.
In this paper we establish the orbital stability of standing wave solutions associated to the one-dimensional Schrodinger-Kirchhoff equation. The presence of a mixed term gives us more dispersion, and consequently, a different scenario for the stability of solitary waves in contrast with the corresponding nonlinear Schrodinger equation. For periodic waves, we exhibit two explicit solutions and prove the orbital stability in the energy space.
We consider the focusing nonlinear Schrodinger equation on a large class of rotationally symmetric, noncompact manifolds. We prove the existence of a solitary wave by perturbing off the flat Euclidean case. Furthermore, we study the stability of the solitary wave under radial perturbations by analyzing spectral properties of the associated linearized operator. Finally, in the L2-critical case, by considering the Vakhitov-Kolokolov criterion (see also results of Grillakis-Shatah-Strauss), we provide numerical evidence showing that the introduction of a nontrivial geometry destabilizes the solitary wave in a wide variety of cases, regardless of the curvature of the manifold. In particular, the parameters of the metric corresponding to standard hyperbolic space will lead to instability consistent with the blow-up results of Banica-Duyckaerts (2015). We also provide numerical evidence for geometries under which it would be possible for the Vakhitov-Kolokolov condition to suggest stability, provided certain spectral properties hold in these spaces
86 - A. S. Carstea , A. Ludu 2021
Irrotational ow of a spherical thin liquid layer surrounding a rigid core is described using the defocusing nonlinear Schrodinger equation. Accordingly, azimuthal moving nonlinear waves are modeled by periodic dark solitons expressed by elliptic functions. In the quantum regime the algebraic Bethe ansatz is used in order to capture the energy levels of such motions, which we expect to be relevant for the dynamics of the nuclear clusters in deformed heavy nuclei surface modeled by quantum liquid drops. In order to validate the model we match our theoretical energy spectra with experimental results on energy, angular momentum and parity for alpha particle clustering nuclei.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا