Do you want to publish a course? Click here

An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z=2.2

102   0   0.0 ( 0 )
 Added by Mariska Kriek
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several recent studies have shown that about half of the massive galaxies at z~2 are in a quiescent phase. Moreover, these galaxies are commonly found to be ultra-compact with half-light radii of ~1 kpc. We have obtained a ~29 hr spectrum of a typical quiescent, ultra-dense galaxy at z=2.1865 with the Gemini Near-Infrared Spectrograph. The spectrum exhibits a strong optical break and several absorption features, which have not previously been detected in z>2 quiescent galaxies. Comparison of the spectral energy distribution with stellar population synthesis models implies a low star formation rate (SFR) of 1-3 Msol/yr, an age of 1.3-2.2 Gyr, and a stellar mass of ~2x10^11 Msol. We detect several faint emission lines, with emission-line ratios of [NII]/Halpha, [SII]/Halpha and [OII]/[OIII] typical of low-ionization nuclear emission-line regions. Thus, neither the stellar continuum nor the nebular emission implies active star formation. The current SFR is <1% of the past average SFR. If this galaxy is representative of compact quiescent galaxies beyond z=2, it implies that quenching of star formation is extremely efficient and also indicates that low luminosity active galactic nuclei (AGNs) could be common in these objects. Nuclear emission is a potential concern for the size measurement. However, we show that the AGN contributes <8% to the rest-frame optical emission. A possible post-starburst population may affect size measurements more strongly; although a 0.5 Gyr old stellar population can make up <10% of the total stellar mass, it could account for up to ~40% of the optical light. Nevertheless, this spectrum shows that this compact galaxy is dominated by an evolved stellar population.



rate research

Read More

159 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
[Abridged] We present the results of new near-IR spectroscopic observations of passive galaxies at z>1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in absorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample almost complete to K(AB)=21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of ~0.05; however, ~30% of objects have photometric redshifts systematically underestimated by up to ~25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z=1.43, 1.53, 1.67 and 1.82, with this latter one including 7 galaxies. SED fits to broad-band fluxes indicate stellar masses in the range of ~4-40x10^10Msun and that star formation was quenched ~1 Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their Hdelta_F and Dn4000 indices, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the coaddition of 17 individual spectra. The effective radii of the galaxies have been measured on the HST/ACS F814W image, confirming the coexistence at these redshifts of passive galaxies which are substantially more compact than their local counterparts with others that follow the local size-stellar mass relation. For the galaxy with best S/N spectrum we were able to measure a velocity dispersion of 270+/-105 km/s, indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius.
In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques . We provide stacked, sky-subtracted images in $YJHK_{rm s}$ and narrow-band filters constructed from data collected during the first year of UltraVISTA observations. Our stacked images reach $5sigma$ $AB$ depths in an aperture of $2arcsec$ diameter of $sim 25$ in $Y$ and $sim 24$ in $JHK_{rm s}$ bands and all have sub-arcsecond seeing. To this $5sigma$ limit, our $K_{rm s}$ catalogue contains 216,268 sources. We carry out a series of quality assessment tests on our images and catalogues, comparing our stacks with existing catalogues. The $1sigma$ astrometric RMS in both directions for stars selected with $17.0<K_{rm s}rm {(AB)} <19.5$ is $sim 0.08arcsec$ in comparison to the publicly-available COSMOS ACS catalogues. Our images are resampled to the same pixel scale and tangent point as the publicly available COSMOS data and so may be easily used to generate multi-colour catalogues using this data. All images and catalogues presented in this paper are publicly available through ESOs phase 3 archiving and distribution system and from the UltraVISTA web site.
One of the greatest challenges to theoretical models of massive galaxy formation is the regulation of star formation at early times. The relative roles of molecular gas expulsion, depletion, and stabilization are uncertain as direct observational constraints of the gas reservoirs in quenched or quenching galaxies at high redshift are scant. We present ALMA observations of CO(2-1) in a massive ($log M_{star}/M_{odot}=11.2$), recently quenched galaxy at $z=1.522$. The optical spectrum of this object shows strong Balmer absorption lines, which implies that star formation ceased $sim$0.8 Gyr ago. We do not detect CO(2-1) line emission, placing an upper limit on the molecular $mathrm{H_2}$ gas mass of 1.1$times10^{10},M_{odot}$. The implied gas fraction is $f_{rm{H_2}}{equiv M_{H_2}/M_{star}}<7%$, $sim10times$ lower than typical star forming galaxies at similar stellar masses at this redshift, among the lowest gas fractions at this specific star formation rate at any epoch, and the most stringent constraint on the gas contents of a $z>1$ passive galaxy to date. Our observations show that the depletion of $mathrm{H_2}$ from the interstellar medium of quenched objects can be both efficient and fairly complete, in contrast to recent claims of significant cold gas in recently quenched galaxies. We explore the variation in observed gas fractions in high-$z$ galaxies and show that galaxies with high stellar surface density have low $f_{rm{H_2}}$, similar to recent correlations between specific star formation rate and stellar surface density.
128 - D. Fadda 2010
We present ultra-deep mid-IR spectra of 48 infrared-luminous galaxies in the GOODS-South field obtained with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14 - 0.5 mJy at 24 um) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using PAH and Si absorption features. Only few of these galaxies (5% at z~1 and 12% at z~2) have their total infrared luminosity dominated by emission from AGN. The averaged mid-IR spectra of the z~1 LIRGs and of the z~2 ULIRGs are very similar to the averaged spectrum of local starbursts and HII-like ULIRGs, respectively. We find that 6.2um PAH equivalent widths reach a plateau of ~1 um for L(24 mu) < 1E11 L(sun). At higher luminosities, EW (6.2 mu) anti-correlates with L(24 um). Intriguingly, high-z ULIRGs and SMG lie above the local EW (6.2 um) - L(24 um) relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z~2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L(FIR)/L(1600A) ratios higher than those of starburst galaxies at a given UV slope. The ``IR excess (Daddi et al. 2007) is mostly due to strong 7.7 um PAH emission and under-estimation of UV dust extinction. On the basis of the AGN-powered L (6 um) continuum measured directly from the mid-IR spectra, we estimate an average intrinsic X-ray AGN luminosity of L(2-10 keV) = (0.1 +/- 0.6) 1E43 erg/s, a value substantially lower than the prediction by Daddi et al. (2007).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا