Do you want to publish a course? Click here

Dynamics in Soft-Matter and Biology Studied by Coherent Scattering Probes

97   0   0.0 ( 0 )
 Added by Maikel Rheinstadter
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutrons and x-rays are coherent probes, and their coherent properties are used in scattering experiments. Only coherent scattering probes can elucidate collective molecular motions. While phonons in crystals were studied for half a century now, the study of collective molecular motions in soft-matter and biology is a rather new but upcoming field. Collective dynamics often determine material properties and interactions, and are crucial to establish dynamics-function relations. We review properties of neutrons and x-rays and derive the origin of coherent and incoherent scattering. Taking molecular motions in membranes and proteins as example, the difference between coherent and incoherent dynamics is discussed, and how local and collective motions can be accessed in x-ray and neutron scattering experiments. Matching of coherent properties of the scattering probe may become important in soft-matter and biology because of (1) the missing long ranged order and (2) the large length scales involved. It is likely to be important in systems, where fluctuating nanoscale domains strongly determine material properties. Inelastic scattering can provide very local structural information in disordered systems. Inelastic neutron scattering experiments point to a coexistence of short-lived nanoscale gel and fluid domains in phospholipid bilayers in the range of the gel-fluid phase transition, which may be responsible for critical behavior and determine elastic properties.



rate research

Read More

Lipid membranes in a physiological context cannot be understood without taking into account their mobile environment. Here, we report on a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine). This technique allows discriminating the Q-dependent onset of mobility and provides a benchmark test regarding the feasibility of dynamical neutron scattering investigations on these sample systems. Apart from freezing of the lipid acyl-chains, we could observe a second freezing temperature that we attribute to the hydration water in between the membrane stacks. The freezing is lowered several degrees as compared to (heavy) bulk water.
185 - S.F. Huelga , M.B. Plenio 2013
Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.
Life is characterized by a myriad of complex dynamic processes allowing organisms to grow, reproduce, and evolve. Physical approaches for describing systems out of thermodynamic equilibrium have been increasingly applied to living systems, which often exhibit phenomena unknown from those traditionally studied in physics. Spectacular advances in experimentation during the last decade or two, for example, in microscopy, single cell dynamics, in the reconstruction of sub- and multicellular systems outside of living organisms, or in high throughput data acquisition have yielded an unprecedented wealth of data about cell dynamics, genetic regulation, and organismal development. These data have motivated the development and refinement of concepts and tools to dissect the physical mechanisms underlying biological processes. Notably, the landscape and flux theory as well as active hydrodynamic gel theory have proven very useful in this endeavour. Together with concepts and tools developed in other areas of nonequilibrium physics, significant progresses have been made in unraveling the principles underlying efficient energy transport in photosynthesis, cellular regulatory networks, cellular movements and organization, embryonic development and cancer, neural network dynamics, population dynamics and ecology, as well as ageing, immune responses and evolution. Here, we review recent advances in nonequilibrium physics and survey their application to biological systems. We expect many of these results to be important cornerstones as the field continues to build our understanding of life.
Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.
Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge $Q_W$ of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new physics using effective field theory. Furthermore, using $SU(2)$ invariance, we correlate our findings with those from neutrino-nucleus coherent scattering. Moreover, we investigate signs of parity violation in polarized electron scattering and show how precise measurements on the Weinberg angle, $sin theta_W$, will give rise to competitive bounds on light mediators over a wide range of masses and interactions strength. Lastly, apply our bounds to several models namely, Dark Z, Two Higgs Doublet Model-$U(1)_X$ and 3-3-1, considering both light and heavy mediator regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا