No Arabic abstract
The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the systems long time behavior and the thermalization limit is analyzed.
We study near-equilibrium thermodynamics of bosonic atoms in a two-dimensional optical lattice by ramping up the lattice depth to convert a superfluid into an inhomogeneous mixture of superfluid and Mott insulator. Detailed study of in situ density profiles shows that, first, locally adiabatic ramps do not guarantee global thermal equilibrium. Indeed, full thermalization for typical parameters only occurs for experiment times which exceed one second. Secondly, ramping non-adiabatically to the Mott insulator regime can result in strong localized cooling at short times and global cooling once equilibrated. For an initial temperature estimated as 20 nK, we observe local temperatures as low as 1.5 nK, and a final global temperature of 9 nK. Possible cooling mechanisms include adiabatic decompression, modification of the density of states near the quantum critical regime, and the Joule-Thomson effect. **NOTE: Following submission of arXiv:0910.1382v1, a systematic correction was discovered in the density measurement, stemming from three-body losses during the imaging process. New measurements were performed, and the result is in support of the claim on the slow global dynamics. Due to the substantially altered methods and analysis, a new text has been posted as arXiv:1003.0855.
We discuss the existence of a nontrivial topological phase in one-dimensional interacting systems described by the extended Bose-Hubbard model with a mean filling of one boson per site. Performing large-scale density-matrix renormalization group calculations we show that the presence of nearest-neighbor repulsion enriches the ground-state phase diagram of the paradigmatic Bose-Hubbard model by stabilizing a novel gapped insulating state, the so-called Haldane insulator, which, embedded into superfluid, Mott insulator, and density wave phases, is protected by the lattice inversion symmetry. The quantum phase transitions between the different insulating phases were determined from the central charge via the von Neumann entropy. The Haldane phase reveals a characteristic fourfold degeneracy of the entanglement spectrum. We finally demonstrate that the intensity maximum of the dynamical charge structure factor, accessible by Bragg spectroscopy, features the gapped dispersion known from the spin-1 Heisenberg chain.
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
The non-equilibrium dynamics of a gas of cold atoms in which Rydberg states are off-resonantly excited is studied in the presence of noise. The interplay between interaction and off-resonant excitation leads to an initial dynamics where aggregates of excited Rydberg atoms slowly nucleate and grow, eventually reaching long-lived meta-stable arrangements which then relax further on much longer timescales. This growth dynamics is governed by an effective Master equation which permits a transparent and largely analytical understanding of the underlying physics. By means of extensive numerical simulations we study the many-body dynamics and the correlations of the resulting non-equilibrium states in various dimensions. Our results provide insight into the dynamical richness of strongly interacting Rydberg gases in noisy environments, and highlight the usefulness of these kind of systems for the exploration of soft-matter-type collective behaviour.
The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasi-periodic optical lattice (OL) is investigated by means of a Density Functional Theory approach. Inspired by the protocol implemented in recent cold-atom experiments, designed to identify the many-body localization transition, we analyze the relaxation of an initially prepared imbalance between the occupation number of odd and of even sites. For quasi-disorder strength beyond the Anderson localization transition, the imbalance survives for long times, indicating the inability of the system to reach local equilibrium. The late time value diminishes for increasing interaction strength. Close to the critical quasi-disorder strength corresponding to the noninteracting (Anderson) transition, the interacting system displays an extremely slow relaxation dynamics, consistent with sub-diffusive behavior. The amplitude of the imbalance fluctuations around its running average is found to decrease with time, and such damping is more effective with increasing interaction strengths. While our study addresses the setup with two equally intense OLs, very similar effects due to interactions have been observed also in recent cold-atom experiments performed in the tight-binding regime, i.e. where one of the two OLs is very deep and the other is much weaker.